Featured Research

from universities, journals, and other organizations

Prairie Dogs: Influencing The Accumulation Of Metals In Plants?

Date:
July 10, 2009
Source:
American Journal of Botany
Summary:
Elemental hyperaccumulation in plants is hypothesized to represent a plant defense mechanism. The objective of this study was to determine whether selenium hyperaccumulation offers plants long-term protection from the black-tailed prairie dog. This study is the first to test the ecological significance of hyperaccumulation over a long period in a hyperaccumulator's natural habitat.

Stanleya pinnata (prince's plume) can hyperaccumulate the toxic element selenium (Se) up to 0.5 percent of its dry mass in its natural habitat in the western United States. In a two-year manipulative field experiment to test whether S. pinnata uses Se as an elemental defense against one of its native mammalian herbivores, the blacktailed prairie dog (Cynomys ludovicianus), plants with high Se concentrations had higher survival rates and less herbivory than low-Se counterparts when planted in black-tailed prairie dog towns. These results give better insight into the evolution of plant Se hyperaccumulation, suggesting a role for herbivory as a possible selection pressure.
Credit: Colin Quinn, Colorado State University, Fort Collins, Colorado

Prairie dogs may seem like harmless little creatures, but they can inflict serious injury on plants simply by snacking on them. Plants cannot flee from their furry predators, so how do they avoid becoming a prairie dog's lunch?

Dr. John Freeman and colleagues explore the role of metal hyperaccumulation in plant defense in the June 2009 issue of the American Journal of Botany. Certain plants species growing on soils with high metal content (such as arsenic, copper, selenium, and lead) accumulate large quantities of metals in their leaves and stems. The purpose of this metal hyperaccumulation is not fully known, but metal hyperaccumulation may increase a plant's ability to respond to drought, compete with other plants, or provide a defense against bacteria, viruses, and animals.

"It is interesting to think about the effect of the prairie dog, which was an amazing ecosystem engineer on a very large scale here in North America," said Dr. Freeman, Colorado State University. "From their prehistoric ancestors the ground squirrel to the modern prairie dog, these animals may have driven the evolution of selenium hyperaccumulation as an elemental defense against herbivory in many different plant species."

Dr. Freeman's research focused on the role of selenium hyperaccumulation in Stanleya pinnata (prince's plume), a wildflower related to mustard plants. Although low levels of selenium are essential for many animals, consumption of high levels is toxic. But just because an overdose of selenium is toxic to animals does not mean that the presence of high levels in leaves deters animals from eating the plants; prairie dogs may not know to avoid S. pinnata until it is too late. Few studies have addressed this question and whether metal hyperaccumulation actually acts as a deterrent.

After growing two varieties of S. pinnata that are known to accumulate varying levels of selenium in soils pre-treated with low or high levels of selenium, Dr. Freeman and colleagues planted the varieties in two prairie dog towns, then assessed levels of herbivory for two years. Populations of S. pinnata that had sequestered high levels of selenium in their leaves were not as popular with prairie dogs as those with low levels of the metal; the high levels of selenium in the leaves actually influenced the prairie dogs' appetite.

On the basis of their results, the researchers hypothesized that prairie dogs or other similar small mammals have influenced the evolution of plant selenium hyperaccumulation. Prairie dogs have historically had a large impact on surrounding plant communities. Therefore, selenium hyperaccumulators may have had a selective advantage over other plants in areas with large prairie dog populations.

"Plants have evolved to use materials in their immediate environment to help them survive," Freeman said. "In this case, selenium was readily available and apparently made a good bio-warfare agent against herbivores."


Story Source:

The above story is based on materials provided by American Journal of Botany. Note: Materials may be edited for content and length.


Cite This Page:

American Journal of Botany. "Prairie Dogs: Influencing The Accumulation Of Metals In Plants?." ScienceDaily. ScienceDaily, 10 July 2009. <www.sciencedaily.com/releases/2009/06/090623162121.htm>.
American Journal of Botany. (2009, July 10). Prairie Dogs: Influencing The Accumulation Of Metals In Plants?. ScienceDaily. Retrieved September 14, 2014 from www.sciencedaily.com/releases/2009/06/090623162121.htm
American Journal of Botany. "Prairie Dogs: Influencing The Accumulation Of Metals In Plants?." ScienceDaily. www.sciencedaily.com/releases/2009/06/090623162121.htm (accessed September 14, 2014).

Share This



More Plants & Animals News

Sunday, September 14, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) — New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) — A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
'Magic Mushrooms' Could Help Smokers Quit

'Magic Mushrooms' Could Help Smokers Quit

Newsy (Sep. 11, 2014) — In a small study, researchers found that the majority of long-time smokers quit after taking psilocybin pills and undergoing therapy sessions. Video provided by Newsy
Powered by NewsLook.com
Spinosaurus Could Be First Semi-Aquatic Dinosaur

Spinosaurus Could Be First Semi-Aquatic Dinosaur

Newsy (Sep. 11, 2014) — New research has shown that the Spinosaurus, the largest carnivorous dinosaur, might have been just as well suited for life in the water as on land. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins