Featured Research

from universities, journals, and other organizations

Giant Molecules Made Of Rydberg Atoms Discovered

Date:
August 4, 2009
Source:
University of Oklahoma
Summary:
Researchers have discovered giant Rydberg molecules with a bond as large as a red blood cell. Determining how Rydberg molecules interact is important because Rydberg atoms are a key ingredient in atom based quantum computation schemes.

The main figure is a drawing of the laser cooling and trapping apparatus used to detect the Cs macrodimers. The magnifying glass is a cartoon that represents the idea that the apparatus is like a microscope for observing the molecules. The size is represented by the vernier in the magnifying glass.
Credit: Dr. James P. Shaffer

A group of University of Oklahoma researchers led by Dr. James P. Shaffer, Homer L. Dodge Department of Physics and Astronomy, have discovered giant Rydberg molecules with a bond as large as a red blood cell. Determining how Rydberg molecules interact is important because Rydberg atoms are a key ingredient in atom based quantum computation schemes.

Giant Rydberg molecules are formed when two Rydberg atoms interact. A Rydberg atom is an atom that has at least one electron orbiting the nucleus at a very large distance. A giant molecule can form from two Rydberg atoms when they are in close proximity to one another because fluctuations of the electron orbiting the nucleus can create an electric field at the position of the other Rydberg atom and vice versa to attract the atoms to each other.

An additional electric field can change the orbit of the electrons and lead to a change in the forces acting between the Rydberg atoms. The ability to change the orbit of the electron with an electric field is what makes it possible to control the properties of the molecule, such as binding energy and vibrational frequencies. Applying an electric field to tailor the properties of these types of molecules is a unique property.

The characteristics of the macroscopic molecules make them ideal candidates for probing quantum gases, properties of the electromagnetic field, and determining how Rydberg molecules interact. Shaffer says an understanding of these problems will bring us closer to a new generation of quantum mechanical devices that meld the best properties of isolated atomic systems with advances in microelectronic fabrication and materials science.

The research performed by Shaffer, K.R. Overstreet, A. Schwettmann, J. Tallant, and D. Booth is reported in the advanced online version (June) of Nature Physics and in the July issue of the scientific journal.


Story Source:

The above story is based on materials provided by University of Oklahoma. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. R. Overstreet, A. Schwettmann, J. Tallant, D. Booth, J. P. Shaffer. Observation of electric-field-induced Cs Rydberg atom macrodimers. Nature Physics, 2009; 5: 581-585 DOI: 10.1038/nphys1307

Cite This Page:

University of Oklahoma. "Giant Molecules Made Of Rydberg Atoms Discovered." ScienceDaily. ScienceDaily, 4 August 2009. <www.sciencedaily.com/releases/2009/06/090624111913.htm>.
University of Oklahoma. (2009, August 4). Giant Molecules Made Of Rydberg Atoms Discovered. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2009/06/090624111913.htm
University of Oklahoma. "Giant Molecules Made Of Rydberg Atoms Discovered." ScienceDaily. www.sciencedaily.com/releases/2009/06/090624111913.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Massive Air Bag Recall Affects More Than 4.5 Million Vehicles

Massive Air Bag Recall Affects More Than 4.5 Million Vehicles

Reuters - US Online Video (Oct. 21, 2014) Major automakers are recalling millions of vehicles due to potentially defective front passenger air bag inflators that can rupture and spray metal shrapnel. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins