Featured Research

from universities, journals, and other organizations

Giant Molecules Made Of Rydberg Atoms Discovered

Date:
August 4, 2009
Source:
University of Oklahoma
Summary:
Researchers have discovered giant Rydberg molecules with a bond as large as a red blood cell. Determining how Rydberg molecules interact is important because Rydberg atoms are a key ingredient in atom based quantum computation schemes.

The main figure is a drawing of the laser cooling and trapping apparatus used to detect the Cs macrodimers. The magnifying glass is a cartoon that represents the idea that the apparatus is like a microscope for observing the molecules. The size is represented by the vernier in the magnifying glass.
Credit: Dr. James P. Shaffer

A group of University of Oklahoma researchers led by Dr. James P. Shaffer, Homer L. Dodge Department of Physics and Astronomy, have discovered giant Rydberg molecules with a bond as large as a red blood cell. Determining how Rydberg molecules interact is important because Rydberg atoms are a key ingredient in atom based quantum computation schemes.

Giant Rydberg molecules are formed when two Rydberg atoms interact. A Rydberg atom is an atom that has at least one electron orbiting the nucleus at a very large distance. A giant molecule can form from two Rydberg atoms when they are in close proximity to one another because fluctuations of the electron orbiting the nucleus can create an electric field at the position of the other Rydberg atom and vice versa to attract the atoms to each other.

An additional electric field can change the orbit of the electrons and lead to a change in the forces acting between the Rydberg atoms. The ability to change the orbit of the electron with an electric field is what makes it possible to control the properties of the molecule, such as binding energy and vibrational frequencies. Applying an electric field to tailor the properties of these types of molecules is a unique property.

The characteristics of the macroscopic molecules make them ideal candidates for probing quantum gases, properties of the electromagnetic field, and determining how Rydberg molecules interact. Shaffer says an understanding of these problems will bring us closer to a new generation of quantum mechanical devices that meld the best properties of isolated atomic systems with advances in microelectronic fabrication and materials science.

The research performed by Shaffer, K.R. Overstreet, A. Schwettmann, J. Tallant, and D. Booth is reported in the advanced online version (June) of Nature Physics and in the July issue of the scientific journal.


Story Source:

The above story is based on materials provided by University of Oklahoma. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. R. Overstreet, A. Schwettmann, J. Tallant, D. Booth, J. P. Shaffer. Observation of electric-field-induced Cs Rydberg atom macrodimers. Nature Physics, 2009; 5: 581-585 DOI: 10.1038/nphys1307

Cite This Page:

University of Oklahoma. "Giant Molecules Made Of Rydberg Atoms Discovered." ScienceDaily. ScienceDaily, 4 August 2009. <www.sciencedaily.com/releases/2009/06/090624111913.htm>.
University of Oklahoma. (2009, August 4). Giant Molecules Made Of Rydberg Atoms Discovered. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2009/06/090624111913.htm
University of Oklahoma. "Giant Molecules Made Of Rydberg Atoms Discovered." ScienceDaily. www.sciencedaily.com/releases/2009/06/090624111913.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins