Featured Research

from universities, journals, and other organizations

HIV-1 Damages Gut Antibody-producing Immune Cells Within Days Of Infection

Date:
July 14, 2009
Source:
Duke University Medical Center
Summary:
The virus that causes AIDS is classified as a lentivirus, a word derived from the Latin prefix, "lenti-," meaning "slow". But new research suggests that HIV-1 is anything but -- moving at breathtaking speed in destroying and dysregulating the body's gut-based B-cell antibody-producing system.

The virus that causes AIDS is classified as a lentivirus, a word derived from the Latin prefix, "lenti-," meaning "slow." But new research from the NIAID-funded Center for HIV/AIDS Vaccine Immunology suggests that HIV-1 is anything but – moving at breathtaking speed in destroying and dysregulating the body's gut-based B-cell antibody-producing system.

Related Articles


"These new data show that damage to the antibody arm of the immune system begins quickly, within days. We know that by 80 days, half of the generative microenvironments for antibodies within the immune system in the gut are destroyed," said Barton Haynes, M.D., director of the Center for HIV/AIDS Vaccine Immunology and the senior author of the study.

The study is the first to examine what happens to B cells in the gut in the earliest stage of HIV-1 infection. Researchers say the findings may shed light on one of the big mysteries in HIV: why the B cell, or antibody response, is so slow to arise - and so weak when it finally does, that it is unable to offer any kind of meaningful defense.

B cells that make antibodies against invading microbes are born in the bone marrow but migrate out and mature in different locations throughout the body. Some wind up in the intestine and settle in stretches of lymph node-like follicles called Payer's patches that are found at the bottom of the small intestine.

There, tucked inside the follicles' nurturing germinal centers, the B cells set up surveillance, waiting to rise up against incoming bacteria, viruses, or other pathogens. "Unfortunately, we found they are no match for HIV-1," said Anthony Moody, M.D. a member of the Duke Human Vaccine Institute (DHVI) and a lead author of the study.

Moody and co-lead author Marc Levesque, M.D., a former member of DHVI but now at the University of Pittsburgh, led a team of researchers in examining B cells in blood as early as 17 days after viral transmission, and in lymph tissue in the gut beginning at 47 days after transmission in 40 people infected with HIV-1. They compared their findings with similar tissue from healthy controls.

They discovered that even at this early stage, HIV-1 had already ravaged the gut's B cell arm of the immune system. The vast majority of the follicles in the Payer's patches had been damaged. "HIV-1 turns on the immune system, but turns it on in the wrong way," Moody said. "We found that it was churning out all sorts of B cells. Some appeared to be reactive against HIV-1, but others appeared reactive to things like influenza as well as self molecules."

In addition, the researchers found that by as early as 17 days after transmission, HIV-1 decreased the numbers of naďve B cells – cells that may have had the potential to mature into potent infection-fighters.

Such deregulation had been described in chronic HIV-1-infection, but never before in such an early phase of the disease, said Moody. "It is no wonder the B cell response is so weak in response to HIV-1 infection. The virus causes such early disruption that it is simply not able to work as it is supposed to. "It is really quite sobering."

The findings may be sobering, but they also reinforce the research team's vision of what a successful AIDS vaccine might look like.

"First, an effective vaccine will have to produce potent antibodies that would already be in circulation before infection occurs," said Haynes, who is also a professor of medicine and director of the Human Vaccine Institute at Duke. "Then, if the virus manages to escape that first line of defense, the vaccine would need to be able to educate the immune system to rapidly respond to eliminate transmitted virus strains. It is this continually emerging picture of what happens at the very earliest period after infection that is helping us to understand the job we have to do," Haynes said.

The study was funded by the National Institutes Health, National Institute of Allergy and Infectious Diseases, Division of AIDS.

Co-authors of the study from Duke include Kwan-Kid Hwang, Dawn Marshall, John Whiteside, Joshua Amos, Thaddeus Gurley, Sallie All good, Benjamin Haynes, Nathan Vandergrift, Steven Plunk, Charles Hicks, Hoaxing Liam, and Garnett Kelsey.

Co-authors from other institutions include Daniel Parker, Myron Cohen, Joseph Erin, David Margolis and Nicholas Shaken, from the University of North Carolina; Martin Markowitz, from the Aaron Diamond Research Center; George Shaw, from the University of Alabama and Jorn Schmitz from Beth Deaconess Medical Center.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Levesque MC, Moody MA, Hwang K-K, Marshall DJ, Whitesides JF, et al. Polyclonal B Cell Differentiation and Loss of Gastrointestinal Tract Germinal Centers in the Earliest Stages of HIV-1 Infection. PLoS Med, 6(7): e1000107 DOI: 10.1371/journal.pmed.1000107

Cite This Page:

Duke University Medical Center. "HIV-1 Damages Gut Antibody-producing Immune Cells Within Days Of Infection." ScienceDaily. ScienceDaily, 14 July 2009. <www.sciencedaily.com/releases/2009/07/090707093751.htm>.
Duke University Medical Center. (2009, July 14). HIV-1 Damages Gut Antibody-producing Immune Cells Within Days Of Infection. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/07/090707093751.htm
Duke University Medical Center. "HIV-1 Damages Gut Antibody-producing Immune Cells Within Days Of Infection." ScienceDaily. www.sciencedaily.com/releases/2009/07/090707093751.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins