Featured Research

from universities, journals, and other organizations

New Role Discovered For Molecule Important In Development Of The Pancreas

Date:
July 14, 2009
Source:
University of Pennsylvania School of Medicine
Summary:
For years researchers have been searching for a way to treat diabetics by reactivating their insulin-producing beta cells, to no avail. Now, they may be one step closer. A protein, whose role in pancreatic development has long been recognized, has been discovered to play an additional and previously unknown regulatory role in the development of cells in the immature endocrine system. These cells ultimately give rise to pancreatic islet cells, which include beta cells.

Adult mouse islet cell (insulin in green; endothelial marker Meca-32 in red).
Credit: K.C. Claiborn and D.A. Stoffers Mt Sinai J Med. 2008 Aug; 75 (4):362-71

For years researchers have been searching for a way to treat diabetics by reactivating their insulin-producing beta cells, to no avail. Now, they may be one step closer. A protein, whose role in pancreatic development has long been recognized, has been discovered to play an additional and previously unknown regulatory role in the development of cells in the immature endocrine system. These cells ultimately give rise to pancreatic islet cells, which include beta cells.

Related Articles


By carefully defining the developmental steps and genetic circuits that lead to mature beta cells, researchers may be able to one day mimic these developmental processes, thereby facilitating beta-cell growth in the lab, and eventually, new therapies. The findings appear in the July 2009 issue of the Journal of Clinical Investigation.

“The protein, Pdx1, is a pivotal molecule in the regulation of beta-cell development and we hope this type of information could help in efforts to generate beta-cell replacements for the treatment of diabetes," says senior author Doris Stoffers, MD, PhD, Associate Professor of Medicine at the University of Pennsylvania School of Medicine. Stoffers is also a member of the Institute for Diabetes, Obesity, and Metabolism at Penn.

Pdx1 is a key regulator of pancreatic development and adult beta-cell function. For example, loss of a single copy of Pdx1 in mice leads to diabetes; loss of two copies leads to a complete failure of the pancreas to form. This new research expands the role of Pdx1 in beta-cell biology in the developing embryo.

Ultimately, Stoffers says, these findings could help researchers intent on developing cell-based therapeutic approaches to diabetes – though such advances are a long way off. Both type 1 and type 2 diabetes are caused by a loss of insulin-producing beta cells. In theory, transplantation of fresh beta cells should halt the disease, yet researchers have not yet been able to generate these cells in the lab at high efficiency, whether from embryonic stem cells or by reprogramming other mature cell types.

“The prevailing view is if we understood how the process occurs normally, we might be able to apply that information to faithfully and efficiently push the cells down the pathway to ultimately generate beta cells that may be used clinically,” she says.

The new findings represent a previously unknown role for Pdx1. Endocrine precursor cell development is controlled by a DNA-binding transcription factor called neurogenin-3 (Ngn3). Ngn3, in turn, is regulated by four additional proteins: Sox9, Foxa2, Hnf6, and Hnf1b. In short, this study found that Pdx1 binds directly to the Ngn3 gene to orchestrate gene expression with these proteins.

Specifically, Stoffers was curious about the function of one end of the Pdx1 protein – the C terminus – whose role in beta-cell development was not known – and yet is mutated in certain diseases. Her team, led by MD-PhD candidate Jennifer Oliver-Krasinski, developed mice that lacked the C terminus, essentially with a shortened Pdx1 protein.

The team found that when both copies of the Pdx1 gene were truncated at the C terminus, the pancreas formed, but the mice quickly developed diabetes. When they investigated why, they found that these mice were deficient in all endocrine cells, including beta cells.

“That led us to conclude the defect was at an early cell, or precursor, stage,” Stoffers says – specifically, in the formation of Ngn3-expressing endocrine progenitor cells.

Further molecular characterization of these mutant mice led the team to conclude that Pdx1 is a master regulator of the development of endocrine cell precursors. Pdx1 binds directly to the Ngn3 gene, controlling its expression; it does this by forming a molecular complex with the protein Hnf6, which is mediated by the Pdx1 C terminus. Pdx1 also binds directly to and controls the expression of two additional endocrine cell genes, Hnf1b and Foxa2.

“Pdx1 not only directly regulates Ngn3, it also indirectly regulates it by controlling the regulatory network of Sox9, Foxa2, Hnf6, and Hnf1b,” she explains.

The most immediate implications of the findings also suggest a molecular mechanism for why those individuals who harbor mutations in Pdx1 get diabetes. If Pdx1 controls Ngn3, and Ngn3 governs endocrine progenitor cell formation, then loss of Pdx1 should result in a loss of endocrine lineages, including beta cells.

That appears to be the case in mice. Now, says Stoffers, the question is: Does this regulatory pathway look and act the same in humans as in mice? “It is likely that the mechanisms are the same, but we would like to directly test that,” concludes Stoffers.

Co-authors in addition to Stoffers and Oliver-Krasinski are Margaret Kasner, Juxiang Yang, Michael F. Crutchlow, Anil Rustgi, and Klaus Kaestner, all from Penn.

The study was supported by the National Institute of Diabetes and Digestive and Kidney Diseases.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "New Role Discovered For Molecule Important In Development Of The Pancreas." ScienceDaily. ScienceDaily, 14 July 2009. <www.sciencedaily.com/releases/2009/07/090710121541.htm>.
University of Pennsylvania School of Medicine. (2009, July 14). New Role Discovered For Molecule Important In Development Of The Pancreas. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2009/07/090710121541.htm
University of Pennsylvania School of Medicine. "New Role Discovered For Molecule Important In Development Of The Pancreas." ScienceDaily. www.sciencedaily.com/releases/2009/07/090710121541.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins