Featured Research

from universities, journals, and other organizations

Researchers Reveal Ocean Acidification At Station ALOHA In Hawaii

Date:
August 7, 2009
Source:
University of Hawaii at Manoa
Summary:
Despite the global environmental importance of ocean acidification, there are few studies of sufficient duration, accuracy and sampling intensity to document the rate of change of ocean pH and shed light on the factors controlling its variability. Researchers in Hawaii have recently addressed this issue.

This image shows the deployment of the spar buoy off the stern of the R/V Ka'Imikai-O-Kanaloa.
Credit: Image courtesy of University of Hawaii at Manoa HOT/SOEST

The burning of fossil fuels has released tremendous amounts of the greenhouse gas carbon dioxide (CO2) into the atmosphere, significantly impacting global climate. Were it not for the absorption of CO2 by the oceans, the alarming growth of atmospheric CO2 concentration would be substantially greater than it is.

Related Articles


However, this beneficial role of the oceans as a CO2 "scrubber" does not come without undesired consequences. When dissolved, CO2 acts as an acid, and lowers seawater pH. Since the beginning of the industrial age, CO2-driven acidification of the surface oceans has already caused a 0.1 unit lowering of pH, and models suggest that another 0.3 pH unit drop by the year 2050 is likely. Continued acidification of the sea may have a host of negative impacts on marine biota, and has the potential to alter the rates of ocean biogeochemical processes.

Despite the global environmental importance of ocean acidification, there are few studies of sufficient duration, accuracy and sampling intensity to document the rate of change of ocean pH and shed light on the factors controlling its variability.

In 1988, Dave Karl and Roger Lukas of the School of Ocean, Earth Science and Technology (SOEST) at the University of Hawai'i at Mānoa founded the Hawaii Ocean Time-series (HOT) program, in part to establish a long-term record of the oceanic response to rising atmospheric CO2. Monthly research cruises to Station ALOHA, north of Oahu, have yielded after 20 years the most detailed record to date on ocean acidification in the Pacific.

Reporting in this week's issue of Proceedings of the National Academy of Sciences, lead author and former SOEST researcher John Dore (now at Montana State University) presents an analysis of the changes of pH at Station ALOHA over time and depth. Dore, along with SOEST co-authors Karl, Lukas, Matt Church and Dan Sadler, found that over the two decades of observation, the surface ocean grew more acidic at exactly the rate expected from chemical equilibration with the atmosphere. However, that rate of change varied considerably on seasonal and inter-annual timescales, and even reversed for one period of nearly five years. The year-to-year changes appear to be driven by climate-induced changes in ocean mixing and attendant biological responses to mixing events.

The authors also found distinct layers at depth in which pH declines were actually faster than at the surface. Dore and colleagues attribute these strata of elevated acidification rates to increases in biological activity and to the intrusion at Station ALOHA of remotely formed water masses with different chemical histories.

About the Hawaii Ocean Time-series Program

Scientists working within the Hawaiian Ocean Time-series (HOT) project have been making repeated observations of the hydrography, chemistry and biology at a station north of Hawaii since October 1988. The objective of this research is to provide a comprehensive description of the ocean at a site representative of the central North Pacific Ocean. Cruises are made approximately once a month to Station ALOHA, the HOT deep-water station (22 45'N, 158W) located about 100 km north of Oahu, Hawaii. Measurements of the thermohaline structure, water column chemistry, currents, primary production and particle sedimentation rates are made over a 72-hour period on each cruise.

For more information about Hawaii Ocean Time-series Program please visit http://hahana.soest.hawaii.edu/hot/hot.html.


Story Source:

The above story is based on materials provided by University of Hawaii at Manoa. Note: Materials may be edited for content and length.


Journal Reference:

  1. John E. Dore, Roger Lukas, Daniel W. Sadler, Matthew J. Church and David M. Karl. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. PNAS, 2009; 106 (30): 12235 DOI: 10.1073/pnas.0906044106

Cite This Page:

University of Hawaii at Manoa. "Researchers Reveal Ocean Acidification At Station ALOHA In Hawaii." ScienceDaily. ScienceDaily, 7 August 2009. <www.sciencedaily.com/releases/2009/08/090806112609.htm>.
University of Hawaii at Manoa. (2009, August 7). Researchers Reveal Ocean Acidification At Station ALOHA In Hawaii. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/08/090806112609.htm
University of Hawaii at Manoa. "Researchers Reveal Ocean Acidification At Station ALOHA In Hawaii." ScienceDaily. www.sciencedaily.com/releases/2009/08/090806112609.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins