Featured Research

from universities, journals, and other organizations

Some Skin Cancer May Be Mediated By Primary Cilia Activity

Date:
August 25, 2009
Source:
University of California - San Francisco
Summary:
Tiny, solitary spikes that stick out of nearly every cell in the body play a central role in a type of skin cancer, new research has found. The discovery in mice shows that the microscopic structures known as primary cilia can either suppress or promote this skin cancer, depending on the mutation triggering the disease.

Tiny, solitary spikes that stick out of nearly every cell in the body play a central role in a type of skin cancer, new research has found. The discovery in mice shows that the microscopic structures known as primary cilia can either suppress or promote this skin cancer, depending on the mutation triggering the disease.

The finding suggests that drugs that boost or block primary cilia activity could offer a new strategy against cancer.

Unlike the more familiar motile cilia, primary cilia do not move, and only one pokes out of each cell. They have recently been discovered to play an essential role in assuring normal embryological development.

The new study focused on basal cell carcinoma, the most common cancer in the United States. It is published in the August 23, 2009 advanced online issue of "Nature Medicine." A companion article in the same issue reports a similar discovery regarding a type of brain tumor in children known as medulloblastoma. (See related UCSF news release on this finding.)

The two studies were led by scientists at the University of California, San Francisco, and they are the first demonstrations that primary cilia are required for some kinds of cancer. They are also the first reports that these cilia can protrude from cancer cells, as they do from most normal cells.

If the basal cell carcinoma finding is confirmed in people, the discovery raises the possibility of new cancer treatment strategies, said Jeremy Reiter, MD, PhD, senior author of that paper. Reiter is assistant professor of biochemistry and biophysics, an investigator at the Cardiovascular Research Institute, the Diabetes Center and the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF. In July, President Obama named him as a recipient of the Presidential Early Career Award for Scientists and Engineers for his research on the links between cilia and cancer.

Although they are relegated to the outskirts of the cell, primary cilia help determine which genes are turned on in the nucleus. Two cilia proteins, called Smoothened and Gli, are pivotal in this process. When mutated, they can trigger basal cell carcinoma and other cancers. Clinical trials are already underway to treat cancer with drugs that block the activity of one of these rogue proteins.

"Attacking cilia directly could provide an effective complementary treatment for some cancers," Reiter said, noting that nearly all cancer treatments combine several approaches to kill tumors.

In addition, primary cilia could serve as indicators of the specific mutation causing a cancer, and also help identify how aggressive a tumor is – both useful diagnostics to direct treatment, Reiter said.

The experiments in Reiter's lab drew on discoveries that solitary cilia help choreograph the steps needed to shape the developing embryo. A much-studied signaling molecule called Sonic Hedgehog cruises between cells to direct their behavior, and carries instructions to activate sets of genes at different stages of development. Its signal is also essential for normal cell growth. And when the signaling process goes awry, it can trigger cancer.

Six years ago, scientists found that the potent signaling molecule can't function without primary cilia. Then in 2005, Reiter and colleagues discovered that Hedgehog prompts the Smoothened protein to head to the cilium where it knocks out a Gli "repressor," thereby freeing Gli to switch on genes needed for embryo growth.

The new research reveals that removing primary cilia from skin cancer cells blocks the mutated, hyper-active Smoothened from stimulating tumor growth. The study also found that removing primary cilia actually boosts tumor growth spurred by the other mutated protein, Gli.

In other words, cilia promote cancer growth if Smoothened is hyper-active, but they suppress cancer if Gli is hyper-active.

The scientists hypothesize that without primary cilia, the hyped-up Smoothened can't do its damage because it can't free Gli to unleash rampant cell division. In contrast, without cilia, mutated Gli triggers more uncontrolled cell division because its repressor is not in place to restrain it.

"The cilium doesn't appear to just turn on or turn off Hedgehog signaling," Reiter said. "It does both -- providing both an accelerator and a brake for tumor growth. If cancer is a run-away car, some mutations cause cancer by opening up the throttle. Others promote cancer by cutting the brake line. The cilium houses both the gas and brake pedals for Hedgehog signaling. "

Targeting primary cilia with drugs may neutralize the effect of these mutations – either by boosting cilia function when Gli is hyper-active, or inactivating cilia when mutated Smoothened poses a threat, Reiter said.

"Understanding the molecular machinery that goes awry in cancer should help scientists design new drugs to specifically block the effects of that broken machinery," Reiter said.

Reiter's team studied each of the two over-active, tumor-inducing mutant proteins in the skin of mice. As expected, the mutated proteins promoted tumor growth similar to human basal cell carcinoma. They then removed the cilia in those cells to reveal the effect on tumor growth.

Primary cilia are normally disassembled before each cell division, and then the daughter cells reconstitute them. Since cancer disrupts normal cell growth, many scientists had thought that cancer cells might not have cilia at all.

"The role that cilia play in some cancers gives us another target for anti-cancer therapies," Reiter said.

Lead author on the paper is Sunny Y. Wong, PhD , a postdoctoral fellow in Reiter's lab. Co-authors are Alexandre Ermilov, MD, PhD, and Christopher Bichakjian, MD, researchers in the lab of Andrzej Dlugosz, MD, at the University of Michigan; and Po-Lin So, PhD, a postdoctoral fellow in the lab of Ervin H. Epstein Jr., MD, at Children's Hospital of Oakland Research Institute.

The research was supported in part by the National Institutes of Health, the Burroughs Wellcome Fund, the Packard Foundation and the Sandler Family Supporting Foundation.


Story Source:

The above story is based on materials provided by University of California - San Francisco. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Francisco. "Some Skin Cancer May Be Mediated By Primary Cilia Activity." ScienceDaily. ScienceDaily, 25 August 2009. <www.sciencedaily.com/releases/2009/08/090823184401.htm>.
University of California - San Francisco. (2009, August 25). Some Skin Cancer May Be Mediated By Primary Cilia Activity. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2009/08/090823184401.htm
University of California - San Francisco. "Some Skin Cancer May Be Mediated By Primary Cilia Activity." ScienceDaily. www.sciencedaily.com/releases/2009/08/090823184401.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins