Featured Research

from universities, journals, and other organizations

Over Time, An Invasive Plant Loses Its Toxic Edge

Date:
September 3, 2009
Source:
University of Illinois at Urbana-Champaign
Summary:
Like most invasive plants introduced to the U.S. from Europe and other places, garlic mustard first found it easy to dominate the natives. A new study indicates that eventually, however, its primary weapon -- a fungus-killing toxin injected into the soil -- becomes less potent.

Adam Davis (left) of the US Department of Agriculture, Illinois Natural History Survey, postdoctoral researcher Richard Lankau (center) and INHS plant ecologist Greg Spyreas found that the invasive garlic mustard plant produces lower levels of a defensive toxin after about three decades in a new location.
Credit: Photo by L. Brian Stauffer, U. of I. News Bureau

Like most invasive plants introduced to the U.S. from Europe and other places, garlic mustard first found it easy to dominate the natives. A new study indicates that eventually, however, its primary weapon – a fungus-killing toxin injected into the soil – becomes less potent.

The study, in Proceedings of the National Academy of Sciences, is one of the first to show that evolutionary forces can alter the very attributes that give an invasive plant its advantage. In fact, the study suggests the plant's defenses are undermined by its own success.

Garlic mustard comes from a family of smelly, sharp-tasting plants that includes cabbage, radish, horseradish and wasabi. Unlike most plants, which rely on soil fungi to supplement them with phosphorus, nitrogen and water, garlic mustard gets by without the extra help, said Richard Lankau, a postdoctoral researcher at the Illinois Natural History Survey (INHS) at the University of Illinois. Lankau led the study with INHS plant ecologist Greg Spyreas.

"For whatever reason, these plants just don't hook up with the soil fungus," Lankau said. Instead, garlic mustard produces glucosinolates, pungent compounds that leach into the soil and kill off many soil fungi, especially those native to North America. This weakens the native plants. As a result, garlic mustard now grows in dense patches in many North American woodlands, its preferred habitat. Those patches are often devoid of native plants.

Lankau began the new study with a seemingly obvious question: Once garlic mustard has vanquished most of its competitors, why would it invest as much in maintaining its toxic arsenal? He predicted – correctly, it turns out – that levels of glucosinolates in the plant would diminish over time.

"When you're in a situation where the only thing you're competing with is other garlic mustard, it may be that making lots of this chemical is not a very good idea," he said.

Thanks to a study of historic herbarium records conducted by co-author Victoria Nuzzo, of Natural Area Consultants, N.Y., the researchers had access to a 140-year record of the age of garlic mustard populations across the eastern half of the U.S. The team collected garlic mustard seeds from 44 locations, grew them in a greenhouse and tested glucosinolate levels in each. Those tests found that older populations – those that have been present in an area for more than 30 years – produced lower levels of the fungicidal compounds than those that got their start less than two decades ago, Lankau said.

Genetic studies suggested that these patterns were the result of natural selection. That is, the plants that produced less of the toxin were more likely to survive and reproduce in older populations.

The researchers then grew the garlic mustard in soil from native woodlands. After a time, they removed these plants and potted native trees in the same soil. The trees did best in pots that had held plants from older populations of garlic mustard, indicating, again, that the plants' toxin output had diminished over time, killing less of the fungus on which the native plants relied.

To determine if the decline in glucosinolate production was allowing native plants to return to areas previously dominated by garlic mustard in the wild, the researchers turned to a unique data set available in Illinois. The Critical Trends Assessment Program (CTAP) is a long-term initiative funded by the state Department of Natural Resources and administered by the INHS that monitors the status of plants, birds and insects across the state every five years. The CTAP began in 1997, and so data from the first two sampling periods were used (1997-2001 and 2002-2007)

Because CTAP includes data on plant abundance, including garlic mustard and native plants from across the state, the researchers were able to determine if native plants were declining or advancing in the presence of garlic mustard. Again, they found that older populations of garlic mustard – though still problematic – posed less of a threat to native plants than the newer ones did.

While this study focused on only one plant, the results indicate that some invasive plants evolve in ways that may make them more manageable over time, Spyreas said. This suggests that conservation efforts might be more effective if they focus on the most recently invaded areas, which – in the case of garlic mustard, at least – is probably where the most damage occurs.

This study was funded by the Agriculture and Food Research Initiative at the U.S. Department of Agriculture and by the Illinois Department of Natural Resources. The research team also included Adam Davis, of the Agricultural Research Service at the USDA.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Over Time, An Invasive Plant Loses Its Toxic Edge." ScienceDaily. ScienceDaily, 3 September 2009. <www.sciencedaily.com/releases/2009/09/090901105146.htm>.
University of Illinois at Urbana-Champaign. (2009, September 3). Over Time, An Invasive Plant Loses Its Toxic Edge. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2009/09/090901105146.htm
University of Illinois at Urbana-Champaign. "Over Time, An Invasive Plant Loses Its Toxic Edge." ScienceDaily. www.sciencedaily.com/releases/2009/09/090901105146.htm (accessed July 22, 2014).

Share This




More Plants & Animals News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

San Diego Zoo Welcomes New, Rare Rhino Calf

San Diego Zoo Welcomes New, Rare Rhino Calf

Reuters - US Online Video (July 21, 2014) An endangered black rhino baby is the newest resident at the San Diego Zoo. Sasha Salama reports. Video provided by Reuters
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
A Centuries' Old British Tradition Is Far from a Swan Song

A Centuries' Old British Tradition Is Far from a Swan Song

AFP (July 19, 2014) As if it weren't enough that the Queen is the Sovereign of the UK and 15 other Commonwealth realms, she is also the owner of all Britain's unmarked swans. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins