Featured Research

from universities, journals, and other organizations

New Switch That Causes The Body To Produce Cancerous Cells Discovered

Date:
September 4, 2009
Source:
Syracuse University
Summary:
Researchers have discovered a second molecular switch within the Mixed Lineage Leukemia protein complex that they believe could be exploited to prevent the overproduction of abnormal cells that are found in several types of cancer, including leukemia.

A team of Syracuse University researchers discovered a second molecular switch within the Mixed Lineage Leukemia protein complex that they believe could be exploited to prevent the overproduction of abnormal cells that are found in several types of cancer, including leukemia.

Related Articles


The paper was designated as the "Paper of the Week" in the September 4 issue of the Journal of Biological Chemistry (JBC), published by the American Society for Biochemistry and Molecular Biology. Only the top 1 percent of the more than 6,600 articles published each year in JBC receives this prestigious designation.

The research team is led by biologist Michael Cosgrove, assistant professor in SU's College of Arts and Sciences. Anamika Patel, a post-doctoral researcher in Cosgrove's lab, who is being featured on JBC's website, did much of the experimental work for the paper.

During the course of their research to better understand MLL, a protein switch that helps regulate the formation of white blood cells, Cosgrove's research group discovered a new molecular switch within the MLL complex, which they labeled W-RAD.

"We thought that MLL was the only switching mechanism present in this protein complex," Cosgrove said. "However, we discovered the complex is really two switches."

In normal cells, MLL combines with four proteins that comprise the W-RAD group to create a molecular switch that controls DNA packaging events required to form white blood cells. When the MLL switch is broken, white blood cells do not mature properly, resulting in a dangerous proliferation of abnormal cells.

Similarly, the proteins that form the W-RAD complex are overproduced in several types of cancer cells, but until now, scientists did not know the function of these proteins. Cosgrove's group discovered that the W-RAD proteins form a new kind of switch—one that has never been seen before.

"The W-RAD switching mechanism signals the cell to create multiple copies of cancer cells," Cosgrove says. "If we can find a way to turn off this switch, we might be able to slow or stop the production of abnormal cells and convert them to normal cells."

In October 2008, Cosgrove's research group broke new ground in leukemia research by identifying a way to attack a broken MLL switch using a synthetic peptide. The peptide may be able to reprogram the way DNA is packaged in leukemia cells and help convert abnormal cells into normal ones. That research was also published in the Journal of Biological Chemistry. In June, Cosgrove received a $720,000 Research Scholar Grant from the American Cancer Society to expand his work in leukemia research.


Story Source:

The above story is based on materials provided by Syracuse University. Note: Materials may be edited for content and length.


Cite This Page:

Syracuse University. "New Switch That Causes The Body To Produce Cancerous Cells Discovered." ScienceDaily. ScienceDaily, 4 September 2009. <www.sciencedaily.com/releases/2009/09/090904071646.htm>.
Syracuse University. (2009, September 4). New Switch That Causes The Body To Produce Cancerous Cells Discovered. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2009/09/090904071646.htm
Syracuse University. "New Switch That Causes The Body To Produce Cancerous Cells Discovered." ScienceDaily. www.sciencedaily.com/releases/2009/09/090904071646.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Shark Bite Victim Making Amazing Recovery

Shark Bite Victim Making Amazing Recovery

AP (Jan. 27, 2015) A Texas woman who lost more than five pounds of flesh to a shark in the Bahamas earlier this month could be released from a Florida hospital soon. Experts believe she was bitten by a bull shark while snorkeling. (Jan. 27) Video provided by AP
Powered by NewsLook.com
Ebola Mistakes Should Serve a Lesson Says WHO

Ebola Mistakes Should Serve a Lesson Says WHO

AFP (Jan. 25, 2015) The World Health Organization&apos;s chief on Sunday admitted the UN agency had been caught napping on Ebola, saying it should serve a lesson to avoid similar mistakes in future. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Disneyland Measles Outbreak Spreads To 5 States

Disneyland Measles Outbreak Spreads To 5 States

Newsy (Jan. 24, 2015) Much of the Disneyland measles outbreak is being blamed on the anti-vaccination movement. The CDC encourages just about everyone get immunized. Video provided by Newsy
Powered by NewsLook.com
Growing Measles Outbreak Worries Calif. Parents

Growing Measles Outbreak Worries Calif. Parents

AP (Jan. 23, 2015) Public health officials are rushing to contain a measles outbreak that has sickened 70 people across 6 states and Mexico. The AP&apos;s Raquel Maria Dillon has more. (Jan. 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins