Featured Research

from universities, journals, and other organizations

Bacteria Used To Make Radioactive Metals Inert

Date:
September 9, 2009
Source:
University of Missouri-Columbia
Summary:
The Lost Orphan Mine below the Grand Canyon hasn't produced uranium since the 1960s, but radioactive residue still contaminates the area. Cleaning the region takes an expensive process that is only done in extreme cases, but a biochemistry professor is researching the use of sulfate-reducing bacteria to convert toxic radioactive metal to inert substances, a much more economical solution.

Judy Wall, a professor of biochemistry at the University of Missouri, is working with bacteria that convert toxic radioactive metal to inert substances.

The Lost Orphan Mine below the Grand Canyon hasn't produced uranium since the 1960s, but radioactive residue still contaminates the area. Cleaning the region takes an expensive process that is only done in extreme cases, but Judy Wall, a biochemistry professor at the University of Missouri College of Agriculture, Food and Natural Resources, is researching the use of sulfate-reducing bacteria to convert toxic radioactive metal to inert substances, a much more economical solution.

Related Articles


The bacteria Wall is studying are bio-corrosives and can change the solubility of heavy metals. They can take uranium and convert it to uraninite, a nearly insoluble substance that will sink to the bottom of a lake or stream. Wall is looking into the bacteria's water cleansing ability and how long the changed material would remain inert.

Wall's research could also be beneficial to heavy metal pollution from storage tanks and industrial waste. The bacteria are already present in more than 7,000 heavy metal contaminated sites, but they live in a specific range of oxygen and temperature, making them difficult to control.

"Our research must be done in the absence of air," Wall said. "Obviously, none but the most committed – and stubborn – will work with them."

Even if an oxygen-tolerant strain were developed, there are still multiple factors that would make applying the bacteria challenging, and these microbes can contribute to massive iron corrosion.

"Knowledge of the way bacteria live in the environment, in microbial communities, is still in its infancy," Wall said. "We just don't know a lot about the communication systems among microbes."

Wall and researchers from the Lawrence Berkley National Laboratory in California are investigating the bacterium's basic genetics and hope to determine its growth limits and activity in natural settings, including how to make its interactions with metals sustainable. They have already identified a few genes that are critical to converting uranium.

Wall's research has been published in Applied and Environmental Microbiology, Nucleic Acids Research and Environmental Microbiology.


Story Source:

The above story is based on materials provided by University of Missouri-Columbia. Note: Materials may be edited for content and length.


Cite This Page:

University of Missouri-Columbia. "Bacteria Used To Make Radioactive Metals Inert." ScienceDaily. ScienceDaily, 9 September 2009. <www.sciencedaily.com/releases/2009/09/090908193444.htm>.
University of Missouri-Columbia. (2009, September 9). Bacteria Used To Make Radioactive Metals Inert. ScienceDaily. Retrieved April 18, 2015 from www.sciencedaily.com/releases/2009/09/090908193444.htm
University of Missouri-Columbia. "Bacteria Used To Make Radioactive Metals Inert." ScienceDaily. www.sciencedaily.com/releases/2009/09/090908193444.htm (accessed April 18, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, April 18, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Un-Bee-Lievable: Bees on the Loose After Washington Truck Crash

Un-Bee-Lievable: Bees on the Loose After Washington Truck Crash

Reuters - US Online Video (Apr. 17, 2015) A truck carrying honey bees overturns near Lynnwood, Washington, spreading boxes of live bees across the highway. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Our Love Of Puppy Dog Eyes Explained By Science

Our Love Of Puppy Dog Eyes Explained By Science

Newsy (Apr. 17, 2015) Researchers found a spike in oxytocin occurs in both humans and dogs when they gaze into each other&apos;s eyes. Video provided by Newsy
Powered by NewsLook.com
Dog Flu Spreading in Midwestern States

Dog Flu Spreading in Midwestern States

AP (Apr. 17, 2015) Dog flu is spreading in several Midwestern states. Dog daycare centers and veterinary offices are taking precautions. (April 17) Video provided by AP
Powered by NewsLook.com
Raw: Rare Whale Spotted in Gulf of Mexico

Raw: Rare Whale Spotted in Gulf of Mexico

AP (Apr. 17, 2015) Researchers from the E/V Nautilus had quite a surprise Tuesday, when a curious sperm whale swam around their remotely operated vehicle in the Gulf of Mexico. Cameras captured the encounter. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins