Featured Research

from universities, journals, and other organizations

Inner Workings Of Molecular Thermostat Point To Pathways To Fight Diabetes, Obesity

Date:
September 13, 2009
Source:
University of Pennsylvania School of Medicine
Summary:
Researchers have discovered a molecular circuit involving the oxygen-carrying component of hemoglobin -- heme -- that helps maintain proper metabolism in the body, providing new insights into metabolic disorders such as obesity and diabetes. This happens through a molecular pathway that allows the cell to monitor and adjust internal heme levels via Rev-erb±, creating more when heme levels fall, and slowing it down when levels rise.

Mitochondria in cells (stained green) are the cell's furnace. New data from the Genes & Development paper shows that the co-dependency of Rev-erb-alpha and heme affects mitochondrial function.
Credit: Nan Wu, University of Pennsylvania School of Medicine

Best known as the oxygen-carrying component of hemoglobin, the protein that makes blood red, heme also plays a role in chemical detoxification and energy metabolism within the cell. Heme levels are tightly maintained, and with good reason: Too little heme prevents cell growth and division; excessive amounts of heme are toxic.

Researchers at the University of Pennsylvania School of Medicine have discovered a molecular circuit involving heme that helps maintain proper metabolism in the body, providing new insights into metabolic disorders such as obesity and diabetes.

The work builds on 2007 findings from the same team, led by Mitchell Lazar, MD, PhD, Director of Penn’s Institute for Diabetes, Obesity, and Metabolism, showing that a protein called Rev-erbα coordinates the daily cycles of heme. The new research, published online in Genes & Development, makes it clear that Rev-erbα, by controlling the production of heme, also plays a key role in maintaining the body’s correct metabolism. This happens through a molecular pathway that allows the cell to monitor and adjust internal heme levels, creating more when heme levels fall, and slowing it down when levels rise.

The circuit is a negative feedback loop, with Rev-erbα as its central component, explains Lazar. “Rev-erbα is a thermostat for heme." When heme levels are high, Rev-erbα is activated, reducing heme, which leads the cell back towards a normal state. On the other hand, when heme levels are low, Rev-erbα activity is low, and this permits the cell to make more heme, again leading back toward a normal state. Maintaining this stasis allows energy metabolism to occur but avoids harm to the cell due to excessive levels of heme.

Understanding the control of heme levels is likely to be relevant to several diseases. For example, obesity is a condition where fat tissue builds up due to low energy expenditure relative to energy intake. Proteins such as Rev-erbα that help maintain a cell’s proper metabolism and energy balance point to their role in such metabolic disorders as obesity and diabetes and suggest ways to intervene.

Rev-erbα is a transcription factor, a protein that binds to DNA in front of, or within, genes to alter their expression. Rev-erbα acts as repressor of gene expression, that is, gene expression goes down when it binds to DNA.

Lazar has been studying the protein for nearly 20 years, yet he never really knew how it worked. What he did know was that, as a member of a family of nuclear receptor proteins, Rev-erbα could bind DNA and likely had an intracellular binding partner.

Typical nuclear receptor proteins are like sensors, registering a specific molecular event and responding accordingly, generally by altering gene expression patterns. So, Lazar asked, "What is the purpose of having a system that responds to changes in cellular heme levels?" He hypothesized that the sensor could act to regulate heme itself.

Working with cultured human and mouse cells his team, led by first author, graduate student Nan Wu, monitored heme levels as Rev-erbα abundance changed. What they found confirmed the protein's role in heme regulation: when overexpressed, heme levels dropped; when suppressed, heme levels rose.

"That was consistent with the hypothesis," says Lazar. "The question was, how does heme do this?"

To figure that out, the team looked for Rev-erbα binding sites within the sequences of genes known to control heme biosynthesis and found one in PGC-1α, a transcription factor that stimulates the production of heme. Since Rev-erb activity is controlled by heme itself, the net effect is that, as heme levels rise, PGC-1α gets repressed, and heme synthesis drops off.

The team also demonstrated the physiological consequence of disrupting this pathway. "We reasoned, if heme levels get too low, cells won’t like it," Lazar says, "and they don’t: They stop growing, and they reduce their oxygen consumption in a manner consistent with the role of heme being used to make ATP," a form of cellular energy.

Lazar states that, "Up until now, no one knew there even was a mechanism for keeping heme levels in this narrow range. We’ve shown that it exists and have defined molecular players that make it work."

In so doing, he and his team have linked heme biosynthesis with both energy metabolism and the body's internal clock. Rev-erbα is a negative regulator of genes involved in energy metabolism. It also, along with PGC-1α and heme, rises and falls over a 24-hour period and even regulates some of the cogs within the clock itself.

Now the question is, can this pathway be exploited in the clinic. Lazar's team showed that downregulating heme stifled cell division and metabolism, while upregulating heme enhanced them. It therefore is possible, Lazar says, that by pharmacologically "tickling" Rev-erbα or its other cellular partners to believe the cell has more or less heme than it actually does, researchers may be able to either boost or suppress metabolism accordingly, opening the door to potential therapies for cancer and obesity.

The research was supported by the National Institute of Diabetes and Digestive and Kidney Diseases. Lei Yin, Elyisha A. Hanniman, and Shree Joshi, all from Penn, are co-authors.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Inner Workings Of Molecular Thermostat Point To Pathways To Fight Diabetes, Obesity." ScienceDaily. ScienceDaily, 13 September 2009. <www.sciencedaily.com/releases/2009/09/090911114302.htm>.
University of Pennsylvania School of Medicine. (2009, September 13). Inner Workings Of Molecular Thermostat Point To Pathways To Fight Diabetes, Obesity. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2009/09/090911114302.htm
University of Pennsylvania School of Medicine. "Inner Workings Of Molecular Thermostat Point To Pathways To Fight Diabetes, Obesity." ScienceDaily. www.sciencedaily.com/releases/2009/09/090911114302.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) — The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) — Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) — America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
China's Ageing Millions Look Forward to Bleak Future

China's Ageing Millions Look Forward to Bleak Future

AFP (July 24, 2014) — China's elderly population is expanding so quickly that children struggle to look after them, pushing them to do something unexpected in Chinese society- move their parents into a nursing home. Duration: 02:07 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins