Featured Research

from universities, journals, and other organizations

Gene Variation That Lets People Get By On Less Sleep Transferred To Create Insomniac Mice

Date:
September 17, 2009
Source:
University of Utah Health Sciences
Summary:
Sleep experts have identified a genetic variation in humans, which the scientists also developed in mouse models, that allows a rare number of people to require less sleep than others.

Laboratory mouse. A genetic variation found in people who seem to need only about six hours' sleep --- compared to the often recommended 7 to eight hours --- was put into mice to create a colony of "insomniac" rodents.
Credit: iStockphoto

A University of Utah sleep expert has joined with researchers at the University of California, San Francisco (UCSF), and Stanford University to identify a genetic variation in humans, which the scientists also developed in mouse models, that allows a rare number of people to require less sleep than others.

Published in the Aug. 13 issue of the journal Science, the study describes how a genetic variation found in people who seem to need only about six hours' sleep—compared to the often recommended 7 to eight hours—was put into mice to create a colony of "insomniac" rodents. Like humans with the variation, which is called DEC2, mice who received the variant gene appeared to function normally even though they got less sleep than a control group that didn't have the DEC2 variation.

"We're all different in many ways, and sleep is one of them," said Christopher R. Jones, M.D., Ph.D., associate professor of neurology at the U of U School of Medicine, director of the University's Sleep-Wake Center, and a co-author on the study. "There may be some people who can function more productively with less sleep."

The discovery arose after a 68-year-old woman contacted Jones' collaborators to volunteer for sleep research, telling him she had an unusually early morning wake-up time. Both the woman and her daughter go to bed between 10 and 10:30 p.m. and wake up between 4 and 4:30 in the morning. Yet, their 18-hour day does not affect their energy level or ability to function.

"The mom is very energetic and extremely active," Jones said. "In fact, it makes me feel tired to hear about the activities she does every day."

The woman just returned from a 50-day cruise, dances several nights a week, and plays bridge every day. Intrigued by the woman's ability to operate on less sleep, Jones contacted colleagues at UCSF, who examined the woman's DNA and identified the DEC2 variation. Those researchers, led by the study's first and senior authors, Ying He and Ying-Hui Fu, transferred the "insomnia" gene variation into mice to create a colony for study.

Stanford researcher Nobuhiro Fujiki and colleagues then went about the delicate task of measuring sleep among the insomniac mice. The researchers precisely monitored when the mice were slumbering, and then interrupted their sleep cycle to see how it would affect them. Even with less sleep, the insomniac mice were more active than a group of control mice who didn't have the DEC2 variation. The researchers determined this by monitoring how long both groups of mice spent running in wheels inside their cages, and the insomniac group spent an average 1 more hours turning the wheels than the control group.

This heightened functioning raised the question of whether the insomniac mice slept deeper than the controls. But the Stanford group monitored their sleep and found it was no deeper than that of the control group.

The study begins to shed more light on two related aspects of sleep: the biological clock that lets people sleep in harmony with the cycle of day and night and the body's sleep homeostat—a mechanism in a different part of the brain that tracks how long people are awake and asleep. Genes such as DEC2 are found in both the homeostat and biological clock. Yet, while some of those genes work in the homeostat, they do not appear to have a function in the biological clock.

For the future, Jones wants to study more family members of the now 77-year-old woman. A genealogist tracked some of her relatives to the Slovakia area of Eastern Europe and Jones wants to study them to see how many might have the DEC2 variation. He also wants to explore questions such as whether people with sleep variations are prone to different moods and temperaments than those without it: Do they have more positive outlooks or are they depressed? Are they more driven, and could that explain why they sleep less?

"Their relentless drive is not a mood disorder," Jones said. "There is a strong affective and emotional component to the feeling that you always want to do something. They can't imagine doing nothing."


Story Source:

The above story is based on materials provided by University of Utah Health Sciences. Note: Materials may be edited for content and length.


Cite This Page:

University of Utah Health Sciences. "Gene Variation That Lets People Get By On Less Sleep Transferred To Create Insomniac Mice." ScienceDaily. ScienceDaily, 17 September 2009. <www.sciencedaily.com/releases/2009/09/090916153136.htm>.
University of Utah Health Sciences. (2009, September 17). Gene Variation That Lets People Get By On Less Sleep Transferred To Create Insomniac Mice. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/09/090916153136.htm
University of Utah Health Sciences. "Gene Variation That Lets People Get By On Less Sleep Transferred To Create Insomniac Mice." ScienceDaily. www.sciencedaily.com/releases/2009/09/090916153136.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins