Featured Research

from universities, journals, and other organizations

Novel Chemistry For Ethylene And Tin

Date:
September 30, 2009
Source:
University of California - Davis
Summary:
Chemists show that ethylene, a gas that is important both as a hormone that controls fruit ripening and as a raw material in industrial chemistry, can bind reversibly to tin atoms.

New work by chemists at UC Davis shows that ethylene, a gas that is important both as a hormone that controls fruit ripening and as a raw material in industrial chemistry, can bind reversibly to tin atoms. The research, published Sept. 25 in the journal Science, could have implications for understanding catalytic processes.

Ethylene has long been known to react with transition metals such as iron or copper, but was not thought to react reversibly with metals such as tin or aluminum, said Philip Power, professor of chemistry at UC Davis and senior author on the paper.

"Reversibility is important, because it shows that it could be involved in catalytic processes," Power said.

Catalysts are materials that allow chemical reactions to proceed more efficiently, often by forming a temporary intermediate structure. Catalytic processes are important both in living cells and in industrial chemistry.

Graduate student Yang Peng passed ethylene, at room temperature and normal atmospheric pressure, through a compound made up of two tin atoms bonded to each other and also to rings of carbon atoms. The green tin compound turned yellow in the presence of ethylene, and a new compound could be crystallized out.

Slight heating of the mixture reversed the reaction and released ethylene again.

Power said the result was unexpected, but noted, "you investigate the reactions, and sometimes you find something interesting."

"It's serendipity, but you have to be looking and willing to follow it up," he said.

Power did not foresee an immediate application for the discovery, but said that it would contribute in general to understanding ethylene catalysis. Some plants release ethylene to control fruit ripening, although no known biological molecules include a tin atom. There could be implications for industrial catalysis if similar behavior could be shown for a cheap metal like aluminum, he said.

Also contributing to the work were postdoctoral scientists Xinping Wang and Bobby Ellis, and X-ray crystallographer James Fettinger. The work was funded by the National Science Foundation.


Story Source:

The above story is based on materials provided by University of California - Davis. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Davis. "Novel Chemistry For Ethylene And Tin." ScienceDaily. ScienceDaily, 30 September 2009. <www.sciencedaily.com/releases/2009/09/090929181820.htm>.
University of California - Davis. (2009, September 30). Novel Chemistry For Ethylene And Tin. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2009/09/090929181820.htm
University of California - Davis. "Novel Chemistry For Ethylene And Tin." ScienceDaily. www.sciencedaily.com/releases/2009/09/090929181820.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins