Featured Research

from universities, journals, and other organizations

New Chemical Method For Distinguishing Between Farmed And Wild Salmon

Date:
October 1, 2009
Source:
National Oceanography Centre, Southampton (UK)
Summary:
Wild salmon and farmed salmon can now be distinguished from each other by a technique that examines the chemistry of their scales.

Wild salmon and farmed salmon can now be distinguished from each other by a technique that examines the chemistry of their scales.
Credit: Image courtesy of National Oceanography Centre, Southampton.

Wild salmon and farmed salmon can now be distinguished from each other by a technique that examines the chemistry of their scales.

Related Articles


Dr Clive Trueman, who is based at the National Oceanography Centre, Southampton said: "Salmon farming is a big, intensive business. In 2006, around 130,000 tonnes of salmon were farmed in Scotland for the table. Wild populations of Atlantic salmon are in serious decline across their whole range and the total wild population returning to Scottish rivers in the same year is estimated at less than 5000 tonnes. Wild fish are rare and expensive so there is a strong incentive for fraudulent labelling. Farmed fish also escape into rivers, harming the wild population. Unfortunately, it can be difficult to distinguish between farmed and wild fish."

The new work which was done in collaboration with the Scottish Association for Marine Science (SAMS), Oban, will help crack this problem.

Fish scales are formed from the same chemicals as bones and teeth and grow like tree rings, preserving a chemical record of the water the fish lived in throughout its whole life. Scales are easy to collect, and can be removed from fish without harming them – which is important when studying an endangered population. The team discovered that levels of the trace metal manganese were always much higher in fish of farmed origin.

"This is probably caused by manganese supplements in fish food, and also because conditions underneath the fish cages promote recycling of manganese in the water column," says Dr Elizabeth Adey from SAMS, lead author on the research.

Using relatively simple techniques, the team was able to distinguish between farmed and wild fish with 98% accuracy.

"Because of its non-destructive nature, this technique could be used to assess the proportion of farm escape salmon present in any river, and therefore identify where additional conservation and wildlife protection measures are needed," says Dr Trueman, a geochemist with the University of Southampton's School of Ocean and Earth Science, based at that National Oceanography Centre.

Concern over declining numbers of wild Atlantic salmon has led to the closure of most fisheries, and the growth of salmon farms has been implicated in the decline of the wild fish. In 2000, more than 400,000 fish escaped from farms in Scotland. This is a problem as farmed salmon are not adapted to the local environment, and if they breed with the wild stock, the resulting offspring are less likely to survive to adulthood. In some years, the number of fish that escape from farms in Scotland exceeds the total number of wild fish, and in some Norwegian rivers more than half of all fish are of farmed origin.

It is particularly difficult to distinguish between a farm origin and wild origin fish if some time has passed after the fish escaped, and that is why the new method should prove valuable.

The team also found differences in the chemistry of scales between fish farms, which might allow researchers to identify individual farms responsible for the release of wild fish – although this would require additional work.

The research was supported by the UHI Millennium Institute.


Story Source:

The above story is based on materials provided by National Oceanography Centre, Southampton (UK). Note: Materials may be edited for content and length.


Journal Reference:

  1. Adey et al. Scale microchemistry as a tool to investigate the origin of wild and farmed Salmo salar. Marine Ecology Progress Series, 2009; 390225 DOI: 10.3354/meps08161

Cite This Page:

National Oceanography Centre, Southampton (UK). "New Chemical Method For Distinguishing Between Farmed And Wild Salmon." ScienceDaily. ScienceDaily, 1 October 2009. <www.sciencedaily.com/releases/2009/09/090930102530.htm>.
National Oceanography Centre, Southampton (UK). (2009, October 1). New Chemical Method For Distinguishing Between Farmed And Wild Salmon. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2009/09/090930102530.htm
National Oceanography Centre, Southampton (UK). "New Chemical Method For Distinguishing Between Farmed And Wild Salmon." ScienceDaily. www.sciencedaily.com/releases/2009/09/090930102530.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins