Featured Research

from universities, journals, and other organizations

Boll Weevils: No Mistaking This Bug With New Insect ID Technique

Date:
October 5, 2009
Source:
USDA/Agricultural Research Service
Summary:
Misidentifying boll weevils caught in pheromone traps could be easier to avoid, thanks to a new DNA fingerprinting method.

ARS entomologist Tom Sappington has developed a test that can very precisely distinguish between boll weevil and look-alike species that should not trigger costly pesticide spraying.
Credit: Photo by Jack Dykinga

Misidentifying boll weevils caught in pheromone traps could be easier to avoid, thanks to a new DNA fingerprinting method devised by Agricultural Research Service (ARS) scientists and their collaborators.

Related Articles


Boll weevils-long-snouted, 2/10-inch-long beetles that damage cotton's lint-producing bolls-are familiar foes to growers. Indeed, since first being discovered in southern Texas in 1892, the boll weevil, Anthonomus grandis, has caused billions of dollars in losses to U.S. cotton. An eradication program that began in 1978 has eliminated the pest from 87 percent of the 15 million acres of American cotton.

Trapping, aided by the use of chemical insect attractants called pheromones, is a key component of the program that can tell where, when, and to what degree boll weevils are present, including those re-invading zones previously cleared of the pest. Field scouts checking pheromone traps sometimes encounter other weevil species, or pieces of trapped weevils that have been partially eaten by insect predators like ants, raising the risk of misidentification. That, in turn, can lead to unnecessary and costly insecticide spraying, according to entomologist Tom Sappington, in the ARS Corn Insects and Crop Genetics Research Unit at Ames, Iowa.

Capitalizing on findings from earlier population genetics studies of the boll weevil, Sappington and colleagues devised a method that uses microsatellite molecular markers to distinguish between the boll weevil and other related species, including pepper, cranberry and pecan weevils.

This characteristic DNA fingerprint, observed on a standard electrophoretic gel, appear as three separate bands, forming a unique barcode-like arrangement of DNA that's specific to boll weevils. These bands are of a specific size and are not shown by non-target weevil species. In tests, the method also identified boll weevils from partial remains, including legs and wings, and yielded results in two days.

Sappington coauthored a paper describing the method in the Journal of Economic Entomology, along with colleagues from Rutgers University in Chatsworth, N.J., Oklahoma State University at Stillwater and the Seoul National University in South Korea.


Story Source:

The above story is based on materials provided by USDA/Agricultural Research Service. Note: Materials may be edited for content and length.


Cite This Page:

USDA/Agricultural Research Service. "Boll Weevils: No Mistaking This Bug With New Insect ID Technique." ScienceDaily. ScienceDaily, 5 October 2009. <www.sciencedaily.com/releases/2009/10/091002103500.htm>.
USDA/Agricultural Research Service. (2009, October 5). Boll Weevils: No Mistaking This Bug With New Insect ID Technique. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2009/10/091002103500.htm
USDA/Agricultural Research Service. "Boll Weevils: No Mistaking This Bug With New Insect ID Technique." ScienceDaily. www.sciencedaily.com/releases/2009/10/091002103500.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins