Featured Research

from universities, journals, and other organizations

Amazing Maze Of Maize Evolution: Study On Maize Domestication May Help Improve Crop Yields

Date:
October 5, 2009
Source:
American Journal of Botany
Summary:
Understanding the evolution and domestication of maize is important for many researchers. As one of the most important crops worldwide and one that appears very different from its wild relatives because of domestication, understanding exactly how maize has evolved has many practical benefits and may help improve crop yields. Researchers recently compared corn kernel development to its closest wild relative and have overturned some commonly held beliefs on the domestication of maize.

This is a longitudinal section of developing caryopsis of maize ancestor, teosinte (Zea mays ssp. parviglumis, caryopsis diameter cca. 3 mm). Teosinte plants differ significantly from domesticated maize Zea mays ssp. mays. Teosinte plants have many lateral branches with terminal male inflorescences, which closely resemble maize tassels, and small female inflorescences or “ears”, which are very different from maize ears, in leaf axils. Kernels in the teosinte ears are arranged in two rows and enclosed in hard cupulate fruitcases (fruitcases turn brown if they contain fertilized kernels), and they disarticulate at maturity. In contrast with the highly dissimilar morphology of the teosinte caryopsis, various cellular processes in the filial seed inside the glumes are remarkably similar to maize (which lacks prominent glumes). Endosperm cells in the developing teosinte kernels undergo endoreduplication—multiple duplications of the whole nuclear genome without intervening cell division, resulting in endopolyploid cells. The colored bubbles superimposed on a section of the developing teosinte kernel represent the nuclei in the seed (embryo and endosperm) and in the pericarp (mature ovary wall). Different classes of endopolyploidy are represented by different colors, and the size of the bubbles is proportional to the ploidy level of the nuclei.
Credit: Aleš Kladnik

Understanding the evolution and domestication of maize has been a holy grail for many researchers. As one of the most important crops worldwide and as a crop that appears very different from its wild relatives as a result of domestication, understanding exactly how maize has evolved has many practical benefits and may help to improve crop yields.

In the October issue of the American Journal of Botany, Dr. Marina Dermastia and colleagues published their research comparing corn kernel development to its closest wild relative: teosinte. This research overturns some commonly held beliefs on the domestication of maize because, unexpectedly, many traits seen in the cellular development of maize kernels that were previously attributed to the process of domestication were observed in the development of the teosinte kernels by Dermastia and her colleagues. "Although the teosinte kernels are morphologically so different from that of maize, their inside is not, Dermastia said. "Although we did not expect fundamental differences between maize and teosinte, the similarities were striking."

Some of the traits thought to be unique to maize but now also found in teosinte include an early programmed cell death for cells in part of the kernel and accumulation of phenolic and flavonoid compounds in the walls of these cells. These developmental changes strengthen the cells, protect them against decay and disease, and increase water conductance. According to Dermastia, "We suggested previously that this process was important for the establishment of the water and assimilate flow to the developing maize kernel…in the teosinte kernel, we not only detected programmed cell death…but also all other phenomena described as related to the transport into the maize kernel." The presence of these traits in teosinte kernels suggests that they are not a consequence of maize domestication.

Other developmental traits they observed in the teosinte kernels included the presence of an enzyme that controls the flow of sugar in the developing seed, which appears to be a common mechanism for sugar uptake in both maize and teosinte.

Dermastia and her colleagues did observe one difference between seed development in teosinte and maize. Endoreduplication, the process of a cell duplicating its DNA without subsequent cell division, is a phenomenon that occurs in the endosperm of cereals, which is the nutritious part of the seed. An increasing rate of endoreduplication results in cells with greater DNA content and, subsequently, increased gene expression and greater sink capacity for the developing seed. Dermastia and her colleagues observed that the distribution of cells with high DNA content in maize differs from that of teosinte. In maize, these cells are found in the upper part of the endosperm, while in teosinte they are distributed throughout the endosperm. The researchers hypothesize that this difference may be related to more efficient starch deposition in maize as a result of domestication.

"Our study indicates that the main differences, beside the teosinte fruitcase and its absence in maize, might lay in the process of endoreduplication in endosperm, Dermastia said. "Knowing the process in more depth might be an important step in improving a most important crop."


Story Source:

The above story is based on materials provided by American Journal of Botany. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dermastia, Marina, Kladnik, Ales, Dolenc Koce, Jasna, Chourey, Prem S. A cellular study of teosinte Zea mays subsp. parviglumis (Poaceae) caryopsis development showing several processes conserved in maize. Am. J. Bot., 2009; 96: 1798-1807 DOI: 10.3732/ajb.0900059

Cite This Page:

American Journal of Botany. "Amazing Maze Of Maize Evolution: Study On Maize Domestication May Help Improve Crop Yields." ScienceDaily. ScienceDaily, 5 October 2009. <www.sciencedaily.com/releases/2009/10/091002182631.htm>.
American Journal of Botany. (2009, October 5). Amazing Maze Of Maize Evolution: Study On Maize Domestication May Help Improve Crop Yields. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2009/10/091002182631.htm
American Journal of Botany. "Amazing Maze Of Maize Evolution: Study On Maize Domestication May Help Improve Crop Yields." ScienceDaily. www.sciencedaily.com/releases/2009/10/091002182631.htm (accessed July 24, 2014).

Share This




More Plants & Animals News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
CDC Head Concerned About a Post-Antibiotic Era

CDC Head Concerned About a Post-Antibiotic Era

AP (July 22, 2014) Sounding alarms about the growing threat of antibiotic resistance, CDC Director Tom Frieden warned Tuesday if the global community does not confront the problem soon, the world will be living in a devastating post-antibiotic era. (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins