Featured Research

from universities, journals, and other organizations

Acidic Clouds Nourish World's Oceans

Date:
October 6, 2009
Source:
University of Leeds
Summary:
Acidic clouds are feeding bioavailable iron to the oceans -- a discovery which sheds light on the natural processes that remove carbon dioxide from the atmosphere.

Water droplets in clouds generally form around dust and other particles. When clouds evaporate, as they often do naturally, the surface of the particle can become very acidic. This is especially true where the air is polluted. Paradoxically, scientists suggest that large scale industry in countries like China could be combating global warming to some extent by creating more bioavailable iron in the oceans, and therefore increasing carbon dioxide removal from the atmosphere.
Credit: Copyright Michele Hogan

Scientists at the University of Leeds have proved that acid in the atmosphere breaks down large particles of iron found in dust into small and extremely soluble iron nanoparticles, which are more readily used by plankton.

This is an important finding because lack of iron can be a limiting factor for plankton growth in the ocean - especially in the southern oceans and parts of the eastern Pacific. Addition of such iron nanoparticles would trigger increased absorption of carbon dioxide from the atmosphere.

"This could be a very important discovery because there's only a very small amount of soluble iron in the ocean and if plankton use the iron nanoparticles formed in clouds then the whole flux of bioavailable iron to the oceans needs to be revised," says Dr Zongbo Shi, lead author of the research from the School of Earth and Environment at the University of Leeds.

Water droplets in clouds generally form around dust and other particles. When clouds evaporate, as they often do naturally, the surface of the particle can become very acidic. This is especially true where the air is polluted.

Paradoxically, scientists suggest that large scale industry in countries like China could be combating global warming to some extent by creating more bioavailable iron in the oceans, and therefore increasing carbon dioxide removal from the atmosphere.

"Man made pollution adds more acid to the atmosphere and therefore may encourage the formation of more iron nanoparticles," says Dr Shi.

Scientists carried out the research by simulating clouds in the laboratory to which they added Saharan dust samples. They were then able to mimic natural conditions in order to monitor the chemical processes happening in the system. The laboratory experiments have been confirmed in natural samples where such cloud processing is known to have occurred.

The findings highlight the complexity of the pattern of natural iron delivery to the oceans, throwing new light on recent high profile plans to add iron to the southern oceans artificially to stimulate plankton growth.

"This process is happening in clouds all over the world, but there are particularly interesting consequences for the oceans. What we have uncovered is a previously unknown source of bioavailable iron that is being delivered to the Earth's surface in precipitation," says Professor Michael Krom, the principal investigator of the research, also at the University of Leeds.

The research was funded by the Natural Environment Research Council.


Story Source:

The above story is based on materials provided by University of Leeds. Note: Materials may be edited for content and length.


Journal Reference:

  1. Shi et al. Formation of Iron Nanoparticles and Increase in Iron Reactivity in Mineral Dust during Simulated Cloud Processing. Environmental Science & Technology, 2009; 43 (17): 6592 DOI: 10.1021/es901294g

Cite This Page:

University of Leeds. "Acidic Clouds Nourish World's Oceans." ScienceDaily. ScienceDaily, 6 October 2009. <www.sciencedaily.com/releases/2009/10/091005102645.htm>.
University of Leeds. (2009, October 6). Acidic Clouds Nourish World's Oceans. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2009/10/091005102645.htm
University of Leeds. "Acidic Clouds Nourish World's Oceans." ScienceDaily. www.sciencedaily.com/releases/2009/10/091005102645.htm (accessed September 22, 2014).

Share This



More Earth & Climate News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

AFP (Sep. 22, 2014) Celebrities, political leaders and the masses rallied in New York and across the globe demanding urgent action on climate change, with organizers saying 600,000 people hit the streets. Duration: 01:19 Video provided by AFP
Powered by NewsLook.com
Inside London's Massive Sewer Tunnel Project

Inside London's Massive Sewer Tunnel Project

AP (Sep. 22, 2014) Billions of dollars are being spent on a massive super sewer to take away London's vast output of waste, which is endangering the River Thames. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Washed-Up 'Alien Hairballs' Are Actually Algae

Washed-Up 'Alien Hairballs' Are Actually Algae

Newsy (Sep. 22, 2014) Green balls of algae washed up on Sydney, Australia's Dee Why Beach. Video provided by Newsy
Powered by NewsLook.com
Was The Biggest Climate March In History Underreported?

Was The Biggest Climate March In History Underreported?

Newsy (Sep. 22, 2014) The People's Climate March in New York City drew more than 300,000 people, possibly a record-breaking number. Was the march underreported? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins