Featured Research

from universities, journals, and other organizations

How RNA Polymerase II Gets The Go-ahead For Gene Transcription

Date:
October 9, 2009
Source:
Ludwig-Maximilians-Universität München
Summary:
The central dogma of molecular biology states that genes make RNAs, which then make proteins. Researchers in Germany have now discovered how the crucial first steps in RNA synthesis are executed -- and gene transcription is initiated.

All cells perform certain basic functions. Each must selectively transcribe parts of the DNA that makes up its genome into RNAs that specify the structure of proteins. The set of proteins synthesized by a cell in turn determines its structure and behaviour, and enables it to survive and reproduce. So it is crucial that the appropriate stretches of DNA are transcribed in each cell type.

In the current issue of the journal Nature, a team of researchers at the Gene Center of Ludwig-Maximilians-Universität (LMU) in Munich, led by Professor Patrick Cramer, provides the first detailed description of how the RNA polymerase II initiates gene transcription. "The findings led us to propose a model of the whole complicated process of transcription initiation," says Cramer. "This operation is of crucial importance in all organisms, because it determines which genes are expressed, and when. Our work thus represents a milestone in the quest to understand gene regulation."

Cell types such as liver cells and nerve cells differ from one another because they make distinct sets of proteins. Therefore, gene transcription and protein synthesis must be carried out with great precision. This requires the use of complicated assemblies made up of many different proteins, often referred to as molecular machines. The basic structure of RNA polymerase II, the protein complex that transcribes genes encoding proteins in multicellular organisms, was worked out some years ago, but this structure could not explain how the initial steps in transcription take place.

Signals encoded in the DNA sequence tell RNA polymerase II where to start and stop transcription. The regions in which transcription begins are called promoters. In many genes, the promoter region is marked by a short DNA sequence called the TATA box. The actual transcription start site (TSS) is located 30-40 nucleotides downstream. It was already known that the protein TBP recognizes and binds to the TATA box, producing a sharp kink in the DNA. TBP in turn binds TFIIB, to which the polymerase enzyme (comprising 12 different proteins) then attaches. So it is TFIIB that actually gives the start signal for transcription initiation.

What the LMU researchers in Cramer's group have now done is to determine the three-dimensional structure of the complex formed between RNA polymerase II and TFIIB from brewer's yeast. Analysis of this complex using X-ray diffraction gave them a map that could be compared with one obtained for the polymerase alone. The differences between the two enabled the scientists to localize the TFIIB with respect to both the polymerase and the DNA. On the basis of this structure they were able to deduce how the initiation of transcription occurs, how the TSS is selected and the first segment of RNA is synthesized and, finally, how the polymerase "shifts gear" from the initiation to the elongation mode, as it leaves the region of the promoter and proceeds on through the gene. In a fruitful collaboration with Professor Michael Thomm's lab at the University of Regensburg the researchers also confirmed important aspects of their model experimentally.

It turns out that TFIIB acts as a bridge between TBP and polymerase, so that the polymerase faces the DNA, in the so-called closed complex. This is converted into an open complex when part of the TFIIB (called the B-linker) inserts between the two DNA strands. One of the strands (the template strand) is displaced into a tunnel formed by TFIIB and the polymerase. The complex then searches the sequence in the tunnel for an initiator sequence that defines the TSS, "using a second element (the B-reader) in TFIIB, which functions rather like the reading head in a tape recorder", explains Cramer. When the TSS is located, the first two nucleotides of the new RNA transcript pair with their complementary partners on the DNA and are linked together by the polymerase. This marks the real initiation of transcription. After the addition of additional nucleotides, TFIIB is released from the complex.

The resulting elongation complex continues to synthesize an RNA sequence complementary to that of the template DNA strand, which later determines the structure of a specific protein. As Cramer points out, "The findings led us to propose a model of the whole complicated process of transcription initiation, an operation that is of crucial importance in all organisms, because it determines which genes are expressed, and when." The work of the LMU group thus represents a milestone in the quest to understand how genes are regulated. The results also provide the framework for investigating the mechanisms underlying the regulation of transcription initiation, which governs cellular gene expression. (PH)


Story Source:

The above story is based on materials provided by Ludwig-Maximilians-Universität München. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dirk Kostrewa, Mirijam E. Zeller, Karim-Jean Armache, Martin Seizl, Kristin Leike, Michael Thomm and Patrick Cramer. RNA polymerase II-TFIIB structure and mechanism of transcription initiation. Nature, 2009; DOI: 10.1038/nature08548

Cite This Page:

Ludwig-Maximilians-Universität München. "How RNA Polymerase II Gets The Go-ahead For Gene Transcription." ScienceDaily. ScienceDaily, 9 October 2009. <www.sciencedaily.com/releases/2009/10/091009104646.htm>.
Ludwig-Maximilians-Universität München. (2009, October 9). How RNA Polymerase II Gets The Go-ahead For Gene Transcription. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2009/10/091009104646.htm
Ludwig-Maximilians-Universität München. "How RNA Polymerase II Gets The Go-ahead For Gene Transcription." ScienceDaily. www.sciencedaily.com/releases/2009/10/091009104646.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) — Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) — Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) — Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins