Featured Research

from universities, journals, and other organizations

Junk DNA Mechanism That Prevents Two Species From Reproducing Discovered

Date:
October 27, 2009
Source:
Cornell University
Summary:
Researchers have discovered a genetic mechanism in fruit flies that prevents two closely related species from reproducing, a finding that offers clues to how species evolve.

When two populations of a species become geographically isolated from each other, their genes diverge from one another over time. Eventually, when a male from one group mates with a female from the other group, the offspring will die or be born sterile, as a cross between a horse (left) and a donkey (right) produce a sterile mule. At this point, they have become two distinct species.
Credit: iStockphoto

Cornell researchers have discovered a genetic mechanism in fruit flies that prevents two closely related species from reproducing, a finding that offers clues to how species evolve.

When two populations of a species become geographically isolated from each other, their genes diverge from one another over time.

Eventually, when a male from one group mates with a female from the other group, the offspring will die or be born sterile, as crosses between horses and donkeys produce sterile mules. At this point, they have become two distinct species.

Now, Cornell researchers report in the October issue of Public Library of Science Biology (Vol. 7, No. 10) that rapidly evolving "junk" DNA may create incompatibilities between two related species, preventing them from reproducing. In this case, the researchers studied crosses between closely related fruit flies, Drosophila melanogaster and D. simulans. Nearly 100 years ago, scientists discovered that when male D. melanogasters mate with female D. simulans, normal males survive, but the female embryos die.

"It has remained an unsolved problem," said Patrick Ferree, the paper's lead author and a postdoctoral researcher in the lab of co-author Daniel Barbash, an assistant professor of molecular biology and genetics. "The question is, what are the elements that are killing these female hybrids and how are they doing that?"

The researchers found that the female hybrid embryos died very early in development. In most species, when the male's sperm (carrying either an X or Y chromosome) fertilizes the female's egg (containing an X chromosome), a new cell forms with a single nucleus containing a sex chromosome from each parent. If the offspring inherits its father's X chromosome, it becomes female; if it inherits a Y chromosome, it becomes male. Ferree and Barbash found that a unique segment of DNA in the father's X chromosome leads to embryo death of hybrid females.

The segment of DNA was found in the chromosome's heterochromatin, a densely packed region of highly repetitive sequences of junk DNA near the chromosome's center.

During the embryo's initial divisions, the researchers found, a specific segment of heterochromatin gets "sticky" and halts the process, preventing the entire X chromosome from separating properly; the result is that the early embryo dies.

Researchers have known that DNA in heterochromatin evolves faster than in other parts of the genome. Also, during early development, the proteins required for cell division come from the mother. The researchers speculate that the heterochromatin of the male D. melanogaster's X chromosome has rapidly evolved, such that after mating, the machinery involved in DNA packaging from a D. simulans mother no longer recognizes the D. melanogaster father's "junk" DNA, Ferree said.

The problematic region of D. melanogaster's X chromosome contains about 5 million base pairs of DNA, while the same region of D. simulans' X chromosome contains only about 100,000 base pairs, a 50-fold difference, said Ferree.

"It points to a species-specific difference in heterochromatin between these two species," he added. "This could explain other instances when you have female hybrid lethality," Ferree said.

The study was funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Junk DNA Mechanism That Prevents Two Species From Reproducing Discovered." ScienceDaily. ScienceDaily, 27 October 2009. <www.sciencedaily.com/releases/2009/10/091026220018.htm>.
Cornell University. (2009, October 27). Junk DNA Mechanism That Prevents Two Species From Reproducing Discovered. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2009/10/091026220018.htm
Cornell University. "Junk DNA Mechanism That Prevents Two Species From Reproducing Discovered." ScienceDaily. www.sciencedaily.com/releases/2009/10/091026220018.htm (accessed September 22, 2014).

Share This



More Plants & Animals News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: San Diego Zoo Welcomes Cheetah Cubs

Raw: San Diego Zoo Welcomes Cheetah Cubs

AP (Sep. 20, 2014) The San Diego Zoo has welcomed two Cheetah cubs to its Safari Park. The nearly three-week-old female cubs are being hand fed and are receiving around the clock care. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins