Featured Research

from universities, journals, and other organizations

First Detailed Documentation Of Tsunami Erosion

Date:
October 30, 2009
Source:
University of Washington
Summary:
For the first time, a group of scientists working in the Kuril Islands off the east coast of Russia has documented the scope of tsunami-caused erosion and found that a wave can carry away far more sand and dirt than it deposits.

In the summer of 2006, this area strewn with rocks and logs near the shore of Ainu Bay on Matua Island in the Kurils was covered by about 6 feet of sand and soil, about even with the top of the 6-foot-6 white rod in the center of the photo. When researchers had excavated there previously they did not encounter any of the boulders they later found exposed by the tsunami.
Credit: Breanyn MacInnes

Tsunamis are among the most-devastating natural calamities. These earthquake-generated waves can quickly engulf low-lying land and bring widespread destruction and death. They can deposit sand and debris far inland from where they came ashore.

Related Articles


Now, for the first time, a group of scientists working in the Kuril Islands off the east coast of Russia has documented the scope of tsunami-caused erosion and found that a wave can carry away far more sand and dirt than it deposits.

The fortuitous observations resulted because the Kuril Biocomplexity Project had made detailed surveys of some Kuril Island coastlines during the summer of 2006, and then returned for additional work in the summers of 2007 and 2008. That provided a unique opportunity for before-and-after comparisons following a magnitude 8.3 earthquake and accompanying tsunami on Nov. 15, 2006, and an 8.1 quake and resulting tsunami on Jan. 13, 2007.

When the scientists revisited coastlines they had surveyed in 2006, they found that in some places the amount of sand and soil removed by tsunami erosion was nearly 50 times greater than the amount deposited.

"It was so extreme. I was really surprised," said Breanyn MacInnes, a University of Washington doctoral student in Earth and space sciences.

The team observed shorelines stripped of vegetation, small hills of soil and volcanic cinders washed away to expose boulders and, in one place, the unearthed rusty remnants of military equipment left behind at the end of World War II.

"We were there the year before and it had been completely covered with vegetation, and there were ridges closer to shore that had been completely removed when we returned," MacInnes said.

She is the lead author of a paper describing the observed differences in erosion and deposition, published in the November issue of the journal Geology. Co-authors are Joanne Bourgeois, a UW professor of Earth and space sciences and MacInnes' doctoral adviser, and Tatiana Pinegina and Ekaterina Kravchunovskaya of the Far East Branch of the Russian Academy of Sciences. The work was funded by the National Science Foundation and the Russian Academy of Sciences Institute of Marine Geology and Geophysics.

The Nov. 15, 2006, Kurils earthquake was large enough to raise alarms about the potential for a tsunami throughout the Pacific basin. Only very tiny waves were recorded on the Japanese island of Hokkaido, relatively near the Kurils. However, a tsunami nearly 6 feet high did more than $10 million damage to the harbor at Crescent City, Calif., some 4,500 miles away.

The Kurils themselves were hit by tsunami waves more than 70 feet high in some places, and changes in topography were dramatic.

The amount of erosion from a tsunami depends somewhat on the topography of the land, but definitely is related to the force of the wave, the scientists found. They noted that an area called South Bay on Matua Island lost about 50 cubic meters, or about 1,765 cubic feet, of sediment per meter of width, while an area called Ainu Bay lost an astounding 200 cubic meters, or about 7,060 cubic feet, of sediment per meter of width because of tsunami-induced erosion.

At a spot called Dushnaya Bay, where the tsunami was at a relatively low elevation at its greatest distance from shore, the biggest change occurred on the sandy beach, with about 5 cubic meters, or about 177 cubic feet, of sediment eroded per meter of width.

In other areas, relatively fine volcanic sand from the shore and much coarser volcanic cinders unearthed from ridges were deposited well inland, but the amount of sediment deposited was far less than the amount eroded, the researchers found.

Some of the landscape scars will remain visible for decades, or even centuries, the scientists reported. For example, along Ainu Bay ridges were removed, depressions were scoured into the topography and a lake was breached and drained.

"One thing we really noticed was that anywhere there had been human disturbance, like the remnants of a military base or even just a fencepost, there was always some sort of blowout or deeper erosion," MacInnes said.

She noted that geologists have long considered erosion to be an important factor in studying tsunamis.

"There are a lot of papers that describe erosion but they can't really quantify it. Our study is the first to say, 'This much sand was removed from the coast,'" she said.

"This emphasizes that erosion is something to consider when assessing a community's risks and vulnerability."


Story Source:

The above story is based on materials provided by University of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University of Washington. "First Detailed Documentation Of Tsunami Erosion." ScienceDaily. ScienceDaily, 30 October 2009. <www.sciencedaily.com/releases/2009/10/091028112803.htm>.
University of Washington. (2009, October 30). First Detailed Documentation Of Tsunami Erosion. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2009/10/091028112803.htm
University of Washington. "First Detailed Documentation Of Tsunami Erosion." ScienceDaily. www.sciencedaily.com/releases/2009/10/091028112803.htm (accessed October 30, 2014).

Share This



More Earth & Climate News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Mudslide in Sri Lanka Buries Houses

Deadly Mudslide in Sri Lanka Buries Houses

AP (Oct. 29, 2014) A mudslide triggered by monsoon rains buried scores of workers' houses at a tea plantation in central Sri Lanka on Wednesday, killing at least 10 people and leaving more than 250 missing, an official said. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Galapagos Tortoises Bounce Back, But Ecosystem Lags

Galapagos Tortoises Bounce Back, But Ecosystem Lags

Newsy (Oct. 29, 2014) The Galapagos tortoise has made a stupendous recovery from the brink of extinction to a population of more than 1,000. But it still faces threats. Video provided by Newsy
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins