Featured Research

from universities, journals, and other organizations

Why Do Animals, Especially Males, Have So Many Different Colors?

Date:
November 9, 2009
Source:
University of California - Los Angeles
Summary:
Why do so many animal species -- including fish, birds and insects -- display such rich diversity in coloration and other traits? New research offers an answer.

This male Hetaerina damselfly from the occisa species has red spots at the base and tip of its wings but no black pigmentation. Males of this species show reduced aggression towards intruders of their own species with artificial black wing spots at sites where the black-winged species Hetaerina titia is present but not at sites where Hetaerina titia is absent.
Credit: Image courtesy of University of California - Los Angeles

Why do so many animal species -- including fish, birds and insects -- display such rich diversity in coloration and other traits? In new research, Gregory Grether, UCLA professor of ecology and evolutionary biology, and Christopher Anderson, who recently earned his doctorate in Grether's laboratory, offer an answer.

At least since Charles Darwin, biologists have noticed that species differ in "secondary sexual traits," such as bright coloring or elaborate horns, Grether said. Darwin attributed this diversity to sexual selection, meaning the traits increased an animal's ability to attract mates.

But Grether and Anderson, writing in the Oct. 28 issue of the journal Proceedings of the Royal Society B: Biological Sciences, emphasize another evolutionary factor.

"The cost of attacking the wrong type of male and of being attacked by the wrong type of male favors the rich diversity of coloration and of birdsong and chemical cues, such as odors, to identify rivals," Grether said.

Grether and Anderson studied several species of the Hetaerina damselfly (closely related to dragonflies) and found that differences in coloration served to help damselflies distinguish males of their own species, who are rivals, from those of other species, who are not.

"We found that male Hetaerina damselflies use species differences in wing coloration to distinguish between intruders of their own species and intruders of other damselfly species, but only at sites where the two species naturally occur together," he said. "This provides one of the clearest demonstrations yet of an evolutionary process that is probably very prevalent in nature but which has largely been overlooked. We tested for shifts in what animals recognize as competitors."

Nobel Prize-winning Austrian ethologist and zoologist Konrad Lorenz suggested in 1962 that the spectacularly diverse coloration of coral reef fish was likely due to selection against fighting with the wrong species.

"Just as there could be selection against mating with the wrong species, there can also be selection against fighting with the wrong species," Grether said. "Lorenz said there was no advantage to coral reef fish attacking species that are close in proximity but are not competitors. The idea never really reached the level of attention in evolutionary biology that it deserved."

Lorenz's idea may not accurately explain the color diversity of coral reef fish, Grether said, but it may explain the diversity of coloration of other animal groups.

"When species are found in the same location, they do a better job of telling apart males of their own species from males of the other species than they do in places where they do not occur together," Grether said.

At sites where only one damselfly species occurs naturally, the researchers tested their theory by using members of that species whose wings had been artificially colored to resemble males of another damselfly species.

"We can test their responses at both kinds of sites, and we found they show greater discrimination between males of their own species and of other species at places where they actually have to contend with the other species than at places where they don't. They differentiate based on color," Grether said. "That this ability has evolved as a result of selection against fighting with other species is suggested quite strongly by the fact that in places where the other species do not occur, they do not make that distinction.

"If there is no reason for two species to interact aggressively with each other -- as Lorenz argued with coral reef fish -- then you would expect evolution to favor the ability for them to tell the difference by, for example, an exaggeration in the initial difference in color between them," Grether said. "Differences in color might enable females to more readily tell their own males apart from males of other species. Selection against interspecies aggression could favor the evolution of increased differences between species in color."

Some damselflies species also differ more in coloration where they occur together than where they occur alone, but "this finding can be explained either by selection against mating with the wrong species or selection against fighting with the wrong species," Grether said.

In future research, Grether hopes to learn what proportion of species can tell the difference between members of their own species and members of other species and whether they respond more strongly to their own species in a competitive context. Interspecies aggression and the evolutionary effect it has are understudied scientific questions, Grether said.

In addition to studying several species of damselflies in Mexico and Texas, Grether and Anderson collaborated with modeler Kenichi Okamoto to construct a mathematical model of what happens when species with similar secondary sexual traits come into contact. The model, published in the November 2009 issue of the journal Biological Reviews, predicts rapid evolutionary shifts in secondary sexual traits and also in what the animals recognize as competitors.

"My reading of the evidence," Grether said, "is that these evolutionary processes are important."

The research is federally funded by the National Science Foundation, and by UC MEXUS.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Los Angeles. "Why Do Animals, Especially Males, Have So Many Different Colors?." ScienceDaily. ScienceDaily, 9 November 2009. <www.sciencedaily.com/releases/2009/11/091102112104.htm>.
University of California - Los Angeles. (2009, November 9). Why Do Animals, Especially Males, Have So Many Different Colors?. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2009/11/091102112104.htm
University of California - Los Angeles. "Why Do Animals, Especially Males, Have So Many Different Colors?." ScienceDaily. www.sciencedaily.com/releases/2009/11/091102112104.htm (accessed April 18, 2014).

Share This



More Plants & Animals News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Flamingo Frenzy Ahead of Zoo Construction

Flamingo Frenzy Ahead of Zoo Construction

AP (Apr. 17, 2014) With plenty of honking, flapping, and fluttering, more than three dozen Caribbean flamingos at Zoo Miami were rounded up today as the iconic exhibit was closed for renovations. (April 17) Video provided by AP
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins