Featured Research

from universities, journals, and other organizations

Deciphering The Regulatory Code: Scientists Take New Approach To Predict Gene Expression

Date:
November 10, 2009
Source:
European Molecular Biology Laboratory
Summary:
New research by European scientists is a first step towards forecasting the expression of all genes in a given organism and demonstrates that the genetic regulation that is crucial for correct embryonic development is more flexible than previously thought.

These fluorescence microscopy images of fruit fly embryos demonstrate that the scientists’ computer predictions were correct. As predicted, during the early stages of development (top) a CRM called 1070 is active (red) in the mesoderm (green) – the tissue which will give rise to all muscle types. At a later developmental stage (middle), the same CRM is active (red/pink) in the embryo’s body wall muscle (blue), but not in its gut muscle (green). At the same time (bottom), another CRM, called 5570 (red), drives development in the gut muscle (green) but not in the body wall muscle (blue).
Credit: Furlong/EMBL

Embryonic development is like a well-organised building project, with the embryo's DNA serving as the blueprint from which all construction details are derived. Cells carry out different functions according to a developmental plan, by expressing, i.e. turning on, different combinations of genes. These patterns of gene expression are controlled by transcription factors: molecules which bind to stretches of DNA called cis-regulatory modules (CRMs), and, once bound, switch the relevant genes on or off.

Thanks to scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, it is now possible to accurately predict when and where different CRMs will be active. The study, published today in Nature, is a first step towards forecasting the expression of all genes in a given organism and demonstrates that the genetic regulation that is crucial for correct embryonic development is more flexible than previously thought.

Through an interdisciplinary collaboration between biologist Robert P. Zinzen, computer scientist Charles Girardot and statistician Julien Gagneur, a novel, integrated approach was possible. They combined detailed experimental data about where and when transcription factors are binding to CRMs with a computational approach, and were able to forecast CRM activity.

"Going from global binding data to CRM activity was a big challenge in the field -- one which we have now begun to overcome," says Eileen Furlong, who headed the study.

Using a comprehensive, systematic approach, the scientists identified and recorded the binding profiles -- i.e. the combinations of transcription factors binding at different times and places -- of approximately 8000 CRMs involved in regulating muscle development in the fruit fly Drosophila. The activity of a number of such CRMs had been previously studied, and the EMBL team used this information to group them into classes according to the type of muscle and developmental stages they were active in. The scientists then trained a computer to unravel the binding profiles for each of these groups, and search the 8000 newly identified CRMs for ones whose binding profiles fitted that picture. Such CRMs were predicted to have similar activity patterns, implying they are involved in regulating the development of the same muscle type.

When the scientists tested their predictions experimentally, the results were not only accurate but also enlightening. It turns out that the regulatory code, in which one binding profile leads to one pattern of CRM activity, is actually not that straightforward. CRMs with strikingly different binding profiles can have similar patterns of activity. This plasticity was unexpected, but makes sense in evolutionary terms, the researchers say. The fact that different combinations of transcription factors, or binding codes, can regulate the same developmental process means that even if some transcription factors or CRMs change or are lost during an organism's evolution, it can still develop a gut muscle, for instance.

"What's exciting for me is that this study shows that it is possible to predict when and where genes are expressed, which is a crucial first step towards understanding how regulatory networks drive development," Furlong concludes.


Story Source:

The above story is based on materials provided by European Molecular Biology Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zinzen, R.P., Girardot, C., Gagneur, J., Braun, M. & Furlong, E.E.M. Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature, 2009; 462 (7269): 65 DOI: 10.1038/nature08531

Cite This Page:

European Molecular Biology Laboratory. "Deciphering The Regulatory Code: Scientists Take New Approach To Predict Gene Expression." ScienceDaily. ScienceDaily, 10 November 2009. <www.sciencedaily.com/releases/2009/11/091105102722.htm>.
European Molecular Biology Laboratory. (2009, November 10). Deciphering The Regulatory Code: Scientists Take New Approach To Predict Gene Expression. ScienceDaily. Retrieved September 14, 2014 from www.sciencedaily.com/releases/2009/11/091105102722.htm
European Molecular Biology Laboratory. "Deciphering The Regulatory Code: Scientists Take New Approach To Predict Gene Expression." ScienceDaily. www.sciencedaily.com/releases/2009/11/091105102722.htm (accessed September 14, 2014).

Share This



More Plants & Animals News

Sunday, September 14, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) — New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) — A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
'Magic Mushrooms' Could Help Smokers Quit

'Magic Mushrooms' Could Help Smokers Quit

Newsy (Sep. 11, 2014) — In a small study, researchers found that the majority of long-time smokers quit after taking psilocybin pills and undergoing therapy sessions. Video provided by Newsy
Powered by NewsLook.com
Spinosaurus Could Be First Semi-Aquatic Dinosaur

Spinosaurus Could Be First Semi-Aquatic Dinosaur

Newsy (Sep. 11, 2014) — New research has shown that the Spinosaurus, the largest carnivorous dinosaur, might have been just as well suited for life in the water as on land. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins