Featured Research

from universities, journals, and other organizations

Deciphering The Regulatory Code: Scientists Take New Approach To Predict Gene Expression

Date:
November 10, 2009
Source:
European Molecular Biology Laboratory
Summary:
New research by European scientists is a first step towards forecasting the expression of all genes in a given organism and demonstrates that the genetic regulation that is crucial for correct embryonic development is more flexible than previously thought.

These fluorescence microscopy images of fruit fly embryos demonstrate that the scientists’ computer predictions were correct. As predicted, during the early stages of development (top) a CRM called 1070 is active (red) in the mesoderm (green) – the tissue which will give rise to all muscle types. At a later developmental stage (middle), the same CRM is active (red/pink) in the embryo’s body wall muscle (blue), but not in its gut muscle (green). At the same time (bottom), another CRM, called 5570 (red), drives development in the gut muscle (green) but not in the body wall muscle (blue).
Credit: Furlong/EMBL

Embryonic development is like a well-organised building project, with the embryo's DNA serving as the blueprint from which all construction details are derived. Cells carry out different functions according to a developmental plan, by expressing, i.e. turning on, different combinations of genes. These patterns of gene expression are controlled by transcription factors: molecules which bind to stretches of DNA called cis-regulatory modules (CRMs), and, once bound, switch the relevant genes on or off.

Thanks to scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, it is now possible to accurately predict when and where different CRMs will be active. The study, published today in Nature, is a first step towards forecasting the expression of all genes in a given organism and demonstrates that the genetic regulation that is crucial for correct embryonic development is more flexible than previously thought.

Through an interdisciplinary collaboration between biologist Robert P. Zinzen, computer scientist Charles Girardot and statistician Julien Gagneur, a novel, integrated approach was possible. They combined detailed experimental data about where and when transcription factors are binding to CRMs with a computational approach, and were able to forecast CRM activity.

"Going from global binding data to CRM activity was a big challenge in the field -- one which we have now begun to overcome," says Eileen Furlong, who headed the study.

Using a comprehensive, systematic approach, the scientists identified and recorded the binding profiles -- i.e. the combinations of transcription factors binding at different times and places -- of approximately 8000 CRMs involved in regulating muscle development in the fruit fly Drosophila. The activity of a number of such CRMs had been previously studied, and the EMBL team used this information to group them into classes according to the type of muscle and developmental stages they were active in. The scientists then trained a computer to unravel the binding profiles for each of these groups, and search the 8000 newly identified CRMs for ones whose binding profiles fitted that picture. Such CRMs were predicted to have similar activity patterns, implying they are involved in regulating the development of the same muscle type.

When the scientists tested their predictions experimentally, the results were not only accurate but also enlightening. It turns out that the regulatory code, in which one binding profile leads to one pattern of CRM activity, is actually not that straightforward. CRMs with strikingly different binding profiles can have similar patterns of activity. This plasticity was unexpected, but makes sense in evolutionary terms, the researchers say. The fact that different combinations of transcription factors, or binding codes, can regulate the same developmental process means that even if some transcription factors or CRMs change or are lost during an organism's evolution, it can still develop a gut muscle, for instance.

"What's exciting for me is that this study shows that it is possible to predict when and where genes are expressed, which is a crucial first step towards understanding how regulatory networks drive development," Furlong concludes.


Story Source:

The above story is based on materials provided by European Molecular Biology Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zinzen, R.P., Girardot, C., Gagneur, J., Braun, M. & Furlong, E.E.M. Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature, 2009; 462 (7269): 65 DOI: 10.1038/nature08531

Cite This Page:

European Molecular Biology Laboratory. "Deciphering The Regulatory Code: Scientists Take New Approach To Predict Gene Expression." ScienceDaily. ScienceDaily, 10 November 2009. <www.sciencedaily.com/releases/2009/11/091105102722.htm>.
European Molecular Biology Laboratory. (2009, November 10). Deciphering The Regulatory Code: Scientists Take New Approach To Predict Gene Expression. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2009/11/091105102722.htm
European Molecular Biology Laboratory. "Deciphering The Regulatory Code: Scientists Take New Approach To Predict Gene Expression." ScienceDaily. www.sciencedaily.com/releases/2009/11/091105102722.htm (accessed October 21, 2014).

Share This



More Plants & Animals News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins