Featured Research

from universities, journals, and other organizations

Additive Copper-zinc Interaction Affects Toxic Response In Soybean

Date:
November 10, 2009
Source:
American Society of Agronomy
Summary:
Agricultural soils accumulate trace metals from waste and fungicide application. Regulations for soil concentrations of these potentially plant-toxic elements consider the individual elements, but not their interactions. A new study evaluates whether the copper-zinc interaction in soils is additive as defined by the toxicity response in soybeans.

Agricultural soils accumulate trace metals, particularly copper and zinc, as a result of their presence in wastes (sewage biosolids and manures) and fungicides that are applied over long periods of time. Regulations and guidelines for tolerable concentrations of these potentially plant-toxic elements in soils are based on the assumption that the toxic effects of the metals are substantially independent and not additive.

However, additivity would imply that soil tolerance limits for each metal must be adjusted to compensate for the presence of another metal. There has been very little experimental work to date to provide a basis for determining the degree to which copper-zinc interaction in soils is additive as defined by the toxicity response in crops.

Researchers at Cornell University have investigated the copper-zinc interaction in two soils with different textures, using soybean growth and metal uptake into leaves to evaluate both toxicity and availability of these metals to the plants. Soybean crops were grown in pots in the field in two successive years after allowing copper and zinc sulfate-amended soils to age in the field for one year prior to the first planting. Copper and zinc were added to individual soils to provide 0, 50,100, 200, and 400 mg/kg of each metal as well as every possible combination of addition levels of the two metals. The results from the study are published in the November-December issue of Journal of Environmental Quality.

Interactive effects of copper and zinc were observed both in the soil as well as in the soybean toxic response. In the soil, high copper had a strong effect on inhibiting zinc adsorption on soil particles, thereby causing zinc to be more easily extractable and available. Conversely, there was only a moderate interactive effect of zinc on copper adsorption, probably explained by the higher affinity of copper for soil adsorption sites, particularly those associated with organic matter.

The toxic effects of copper and zinc on soybean growth was found to be additive to a large degree, as measures of both extractable copper and zinc in the soils were needed to adequately explain the inhibition of plant growth over all treatments. However, the toxic effect of copper was stronger than that of zinc, possibly explained by the observed severe impact of copper on soybean root development. Soil texture had a marked influence on the degree of copper and zinc toxicity and availability to soybeans, consistent with numerous studies that have shown coarse-textured soils to be more susceptible to the toxic effects of heavy metals on crops.

The results from the study indicate that guidelines for tolerable upper limits of copper and zinc concentrations in soils are likely to require allowance for the presence of a second toxic metal at elevated concentrations, which could lower the tolerable limit for either copper or zinc. Furthermore, tolerable limits for copper and zinc in soils are likely to be lower in coarse-textured soils.


Story Source:

The above story is based on materials provided by American Society of Agronomy. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bojeong Kim and Murray B. McBride. Phytotoxic Effects of Cu and Zn on Soybeans Grown in Field-Aged Soils: Their Additive and Interactive Actions. Journal of Environmental Quality, 2009; 38 (6): 2253 DOI: 10.2134/jeq2009.0038

Cite This Page:

American Society of Agronomy. "Additive Copper-zinc Interaction Affects Toxic Response In Soybean." ScienceDaily. ScienceDaily, 10 November 2009. <www.sciencedaily.com/releases/2009/11/091110112438.htm>.
American Society of Agronomy. (2009, November 10). Additive Copper-zinc Interaction Affects Toxic Response In Soybean. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2009/11/091110112438.htm
American Society of Agronomy. "Additive Copper-zinc Interaction Affects Toxic Response In Soybean." ScienceDaily. www.sciencedaily.com/releases/2009/11/091110112438.htm (accessed October 20, 2014).

Share This



More Plants & Animals News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins