Featured Research

from universities, journals, and other organizations

Sponges recycle carbon to give life to coral reefs

Date:
November 26, 2009
Source:
The Company of Biologists
Summary:
Coral reefs live in some of the most nutrient deficient waters on the planet, so how do they survive? Marine biologists have discovered that certain sponges could be the key to reef survival. They recycle dissolved organic carbon that is unavailable to other reef residents.

Coral reefs support some of the most diverse ecosystems on the planet, yet they thrive in a marine desert. So how do reefs sustain their thriving populations?

Marine biologist Fleur Van Duyl from the Royal Netherlands Institute for Sea Research is fascinated by the energy budgets that support coral reefs in this impoverished environment. According to van Duyl's former student, Jasper De Goeij, Halisarca caerulea sponges grow in the deep dark cavities beneath reefs, and 90% of their diet is composed of dissolved organic carbon, which is inedible for most other reef residents. But when De Goeij measured the amount of carbon that the brightly coloured sponges consumed he found that they consume half of their own weight each day, yet they never grew.

What were the sponges doing with the carbon? Were the sponges really consuming that much carbon, or was there a problem with De Goeij's measurements? He had to find out where the carbon was going to back up his measurements and publishes his discovery that sponges have one of the fastest cell division rates ever measured, and instead of growing they discard the cells. Essentially, the sponges recycle carbon that would otherwise be lost to the reef. De Goeij publishes his discovery on November 13 2009 in The Journal of Experimental Biology.

Travelling to the Dutch Antilles with his student, Anna De Kluijver, De Goeij started SCUBA diving with the sponges to find out how much carbon they consume. 'It is quite dark and technically difficult to work in the cavities,' explains De Goeij, but the duo collected sponges, placed them in small chambers and exposed the sponges to 5- bromo-2′-deoxyuridine (BrdU). 'The BrdU is only incorporated into the DNA of dividing cells,' explains De Goeij, so cells that carry the BrdU label must be dividing, or have divided, since the molecule was added to the sponge's water, and cells can only divide if they are taking up carbon. But when De Goeij returned to the Netherlands with his samples, he had problems finding the elusive label.

Discussing the BrdU detection problem with his father, biochemist Anton De Goeij, De Goeij Senior offered to introduce his son to Bert Schutte in Maastricht, who had developed a BrdU detection system for use in cancer therapy. Maybe he could help De Goeij Junior find evidence of cell division in his sponges.

Taking his samples to Jack Cleutjens's Maastricht Pathology laboratory, De Goeij was finally able to detect the BrdU label in his sponge cells. Amazingly, half of the sponge's choanocyte (filtration) cells had divided and the choanocyte's cell division cycle was a phenomenally short 5.4 hours. 'That is quicker than most bacteria divide,' exclaims De Goeij.

The sponge was able to take up the colossal amounts of organic carbon that De Goeij had measured, but where was the carbon going: the sponges weren't growing. De Goeij tested to see if the cells were dying and being lost, but he couldn't find any evidence of cell death.

Presenting his results to the Maastricht Pathology Department, someone said 'Lets look at this like a human intestine, then you should see shedding where old cells detach from the epithelia'. De Goeij knew that he had seen some loose cells, and thought that they were artefacts from cutting the samples, but when he and his Pathology Department colleagues went back and looked at the samples, De Goeij realised that choanocytes were shedding all over the place. And then De Goeij remembered the tiny piles of brown material he found next to the sponges in the aquarium every morning.

The sponges were shedding the newly divided cells, which other reef residents could now consume. 'Halisarca caerulea is the great recycler of energy for the reef by turning over energy that nobody else can use [dissolved organic carbon] into energy that everyone can use [discarded choanocytes],' explains De Goeij.


Story Source:

The above story is based on materials provided by The Company of Biologists. The original article was written by Kathryn Knight. Note: Materials may be edited for content and length.


Journal Reference:

  1. De Goeij, J. M., De Kluijver, A., Van Duyl, F. C., Vacelet, J., Wijffels, R. H., De Goeij, A. F. P. M., Cleutjens, J. P. M. and Schutte, B. Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding. The Journal Of Experimental Biology, 212, 3892-3900

Cite This Page:

The Company of Biologists. "Sponges recycle carbon to give life to coral reefs." ScienceDaily. ScienceDaily, 26 November 2009. <www.sciencedaily.com/releases/2009/11/091113083307.htm>.
The Company of Biologists. (2009, November 26). Sponges recycle carbon to give life to coral reefs. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2009/11/091113083307.htm
The Company of Biologists. "Sponges recycle carbon to give life to coral reefs." ScienceDaily. www.sciencedaily.com/releases/2009/11/091113083307.htm (accessed April 16, 2014).

Share This



More Earth & Climate News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
How Mt. Everest Helped Scientists Research Diabetes

How Mt. Everest Helped Scientists Research Diabetes

Newsy (Apr. 15, 2014) British researchers were able to use Mount Everest's low altitudes to study insulin resistance. They hope to find ways to treat diabetes. Video provided by Newsy
Powered by NewsLook.com
The Walking, Talking Oil-Drigging Rig

The Walking, Talking Oil-Drigging Rig

Reuters - Business Video Online (Apr. 15, 2014) Pennsylvania-based Schramm is incorporating modern technology in its next generation oil-drigging rigs, making them smaller, safer and smarter. Ernest Scheyder reports. Video provided by Reuters
Powered by NewsLook.com
In Washington, a Push to Sterilize Stray Cats

In Washington, a Push to Sterilize Stray Cats

AFP (Apr. 14, 2014) To curb the growing numbers of feral cats in the US capital, the Washington Humane Society is encouraging residents to set traps and bring the animals to a sterilization clinic, after which they are released.. Duration: 02:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins