Featured Research

from universities, journals, and other organizations

Engineers use aerospace approach to design wave energy system

Date:
November 20, 2009
Source:
National Science Foundation
Summary:
The ocean is a potentially vast source of electric power, yet as engineers test new technologies for capturing it, the devices are plagued by battering storms, limited efficiency and the need to be tethered to the seafloor.

Shown is the view from the far downstream end into the test section of the U.S. Air Force Academy water tunnel. Three blades of the cycloidal turbine are visible at the far end. Engineer Stefan Siegel and his colleagues test the turbine using the tunnel, with both steady and oscillating flow conditions simulating a shallow-water wave-flow field.
Credit: SSgt Danny Washburn, U.S. Air Force Academy, Department of Aeronautics

The ocean is a potentially vast source of electric power, yet as engineers test new technologies for capturing it, the devices are plagued by battering storms, limited efficiency, and the need to be tethered to the seafloor.

Now, a team of aerospace engineers is applying the principles that keep airplanes aloft to create a new wave-energy system that is durable, extremely efficient, and can be placed anywhere in the ocean, regardless of depth.

While still in early design stages, computer and scale-model tests of the system suggest higher efficiencies than wind turbines. The system is designed to effectively cancel incoming waves, capturing their energy while flattening them out, providing an added application as a storm-wave breaker.

The researchers, from the U.S. Air Force Academy, will present their design at the 62nd annual meeting of the American Physical Society's Division of Fluid Dynamics on Nov. 24, 2009, in Minneapolis, Minn.

"Our group was working on very basic research on feedback flow control for years," says lead researcher Stefan Siegel, referring to efforts to use sensors and adjustable parts to control how fluids flow around airfoils like wings. "For an airplane, when you control that flow, you better control flight--for example, enabling you to land a plane on a shorter runway."

A colleague had read an article on wave energy in a magazine and mentioned it to Siegel and the other team members, and they realized they could operate a wave energy device using the same feedback control concepts they had been developing.

Supported by a grant from the National Science Foundation, the researchers developed a system that uses lift instead of drag to cause the propeller blades to move.

"Every airplane flies with lift, not with drag," says Siegel. "Compare an old style windmill with a modern one. The new style uses lift and is what made wind energy viable--and it doesn't get shredded in a storm like an old windmill. Fluid dynamics fixed the issue for windmills, and can do the same for wave energy."

Windmills have active controls that turn the blades to compensate for storm winds, eliminating lift when it is a risk, and preventing damage.

The Air Force Academy researchers used the same approach with a hydrofoil (equivalent to an airfoil, but for water) and built it into a cycloidal propeller, a design that emerged in the 1930s and currently propels tugboats, ferries and other highly maneuverable ships.

The researchers changed the propeller orientation from horizontal to vertical, allowing direct interaction with the cyclic, up and down motion of wave energy. The researchers also developed individual control systems for each propeller blade, allowing sophisticated manipulations that maximize (or minimize, in the case of storms) interaction with wave energy.

Ultimately, the goal is to keep the flow direction and blade direction constant, cancelling the incoming wave and using standard gear-driven or direct-drive generators to convert the wave energy into electric energy. A propeller that is exactly out of phase with a wave will cancel that wave and maximize energy output.

The cancellation will also allow the float-mounted devices to function without the need of mooring, important for deep-sea locations that hold tremendous wave energy potential and are currently out of reach for many existing wave energy designs.

While the final device may be as large as 40 meters across, laboratory models are currently less than a meter in diameter. A larger version of the system will be tested next year at NSF's Network for Earthquake Engineering Simulation (NEES) tsunami wave basin at Oregon State University, an important experiment for proving the efficacy of the design.

The conference takes place from Nov. 22-24, 2009, at the Minneapolis Convention Center. The conference is the year's largest devoted to fluid dynamics, bringing together researchers from across the world and across a wide range of disciplines.

The talk, "Deep Ocean Wave Cancellation Using a Cycloidal Turbine" is by Stefan Siegel, Tiger Jeans, and Thomas McLaughlin of the U.S. Air Force Academy.


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Engineers use aerospace approach to design wave energy system." ScienceDaily. ScienceDaily, 20 November 2009. <www.sciencedaily.com/releases/2009/11/091119111329.htm>.
National Science Foundation. (2009, November 20). Engineers use aerospace approach to design wave energy system. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2009/11/091119111329.htm
National Science Foundation. "Engineers use aerospace approach to design wave energy system." ScienceDaily. www.sciencedaily.com/releases/2009/11/091119111329.htm (accessed April 24, 2014).

Share This



More Earth & Climate News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) — The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
California Drought Is Good News for Gold Prospectors

California Drought Is Good News for Gold Prospectors

AFP (Apr. 22, 2014) — For months California has suffered from a historic drought. The lack of water is worrying for farmers and ranchers, but for gold diggers it’s a stroke of good fortune. With water levels low, normally inaccessible areas are exposed. Duration: 01:57 Video provided by AFP
Powered by NewsLook.com
Raw: MN Lakes Still Frozen Before Fishing Opener

Raw: MN Lakes Still Frozen Before Fishing Opener

AP (Apr. 22, 2014) — With only three weeks until Minnesota's fishing opener, many are wondering if the ice will be gone. Some of the Northland lakes are still covered by up to three feet of ice, causing concern that just like last year, the lakes won't be ready. (April 22) Video provided by AP
Powered by NewsLook.com
Scientists Warn Of Likely El Niρo Event This Year

Scientists Warn Of Likely El Niρo Event This Year

Newsy (Apr. 22, 2014) — With Pacific ocean water already showing signs of warming, the NOAA says there's about a 66 percent chance the event will begin before November. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins