Featured Research

from universities, journals, and other organizations

Oceanic crust formation is dynamic after all

Date:
November 29, 2009
Source:
Brown University
Summary:
Earth scientists have found strong evidence that the geological processes that lead to the formation of oceanic crust are not as uniformly passive as believed. They found centers of dynamic upwelling in the shallow mantle beneath spreading centers on the seafloor.

A research team led by Brown University studied seismic velocities — the speed of seismic waves — in the Gulf of California to determine that a geological phenomenon known as dynamic upwelling occurs in the Earth’s mantle as oceanic crust is formed.
Credit: Yun Wang/Brown University

Imagine the Earth's crust as the planet's skin: Some areas are old and wrinkled while others have a fresher, more youthful sheen, as if they had been regularly lathered with lotion.

Related Articles


Carry the metaphor a little further and a good picture emerges of the geological processes leading to the creation of the planet's crust. On land, continental crust, once created, can remain more or less unaltered for billions of years. But the oldest oceanic crust is only about 200 million years old, as new crust is continually forming at midocean ridge spreading centers.

While geologists have known that oceanic crust continually replenishes itself, they have been unsure what occurs below the surface that leads to the resurfacing. What geodynamics are occurring in the mantle that eventually produces new crust, that new layer of skin on the ocean's bottom?

The answer has been elusive in part because oceanic crust is difficult to reach and instruments that can measure seismic activity have not fully covered the terrain to obtain an accurate picture of forces below the surface. Now earth scientists led by Brown University have observed -- in detail and at unprecedented depths -- a geological phenomenon known as dynamic upwelling in the underlying mantle beneath a spreading center. Their findings, reported November 26 in Nature, may resolve a longstanding debate regarding the relative importance of passive and dynamic upwelling in the shallow mantle beneath spreading centers on the seafloor.

"We know the crust of the ocean is produced by upwelling beneath separating plates," said Don Forsyth, professor of geological sciences at Brown. "We just didn't know the upwelling pattern that took place, that there are concentrated upwelling centers rather than uniform upwelling."

Mantle upwelling and melting beneath spreading centers has been thought to be mostly a passive response to the separating oceanic plates above. The new finding shows there appears to be a dynamic component as well, driven by the buoyancy of melt retained in the rock or by the lighter chemical composition of rock from which melt has been removed.

The scientists from Brown and the University of Rhode Island based their findings on a high-resolution seismic study in the Gulf of California. In that region, there are 25 seismometers spaced along the western coast of Mexico and the Baja California peninsula, which lie on either side of the Gulf of California. Yun Wang, a Brown graduate student and the paper's lead author, tracked the velocity of seismic waves that traveled from one station to another. She noticed a pattern: The seismic waves in three localized centers, spaced about 250 kilometers (155 miles) apart, traveled more slowly than waves in the surrounding mantle, implying the presence of more melt in the localized centers and thus a more vigorous upwelling. From that, the geologists determined the centers, located 40-90 kilometers (25 to 56 miles) below the surface, showed evidence of dynamic upwelling in the mantle.

"We found a pattern that was predicted by some of the theoretical models of upwelling in midoceanic ridges," Forsyth said.

While other studies have been done of mantle geodynamics, most notably an experiment on the East Pacific Rise, the Brown-URI study imaged seismic activity, or the shear velocity of the seismic waves, some 200 kilometers (124 miles) below the surface -- a far deeper seismic penetration into the mantle than previous experiments.

Brian Savage, assistant professor of geophysics at the University of Rhode Island and a contributing author on the paper, said the finding is important, because it helps to provide "a basic understanding of how a majority of the earth's crust is formed, how it emerges from the mantle below to create the oceanic crust. It's a basic science question that helps understand how crust is created."

The research was funded by the National Science Foundation.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Cite This Page:

Brown University. "Oceanic crust formation is dynamic after all." ScienceDaily. ScienceDaily, 29 November 2009. <www.sciencedaily.com/releases/2009/11/091125135126.htm>.
Brown University. (2009, November 29). Oceanic crust formation is dynamic after all. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2009/11/091125135126.htm
Brown University. "Oceanic crust formation is dynamic after all." ScienceDaily. www.sciencedaily.com/releases/2009/11/091125135126.htm (accessed October 24, 2014).

Share This



More Earth & Climate News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins