Featured Research

from universities, journals, and other organizations

Echinoderms contribute to global carbon sink; impact of marine creatures underestimated

Date:
January 9, 2010
Source:
National Oceanography Centre, Southampton (UK)
Summary:
The impact on levels of carbon dioxide in the Earth's atmosphere by the decaying remains of a group of marine creatures that includes starfish and sea urchin has been significantly underestimated.

Echinoderms such as brittle stars bury significant amounts of carbon at the seabed when they die and decay.
Credit: SERPENT

The impact on levels of carbon dioxide in the Earth's atmosphere by the decaying remains of a group of marine creatures that includes starfish and sea urchin has been significantly underestimated.

"Climate models must take this carbon sink into account," says Mario Lebrato, lead author of the study. The work was done when he was at the National Oceanography Centre, Southampton (NOCS) and affiliated with the University of Southampton's School of Ocean and Earth Science (SOES); he is now at the Leibniz Institute of Marine Science in Germany.

Globally, the seabed habitats occupy more than 300 million million square metres, from the intertidal flats and pools to the mightiest deep-sea trenches at 11,000 meters. The benthos -- the animals living on and in the sediments -- populate this vast ecosystem.

Calcifying organisms incorporate carbon directly from the seawater into their skeletons in the form of inorganic minerals such as calcium carbonate. This means that their bodies contain a substantial amount of inorganic carbon. When they die and sink, some of the inorganic carbon is remineralised, and much of it becomes buried in sediments, where it remains locked up indefinitely.

Lebrato and his colleagues provide the first estimation of the contributions of starfish, sea urchins, brittle stars, sea cucumbers and sea lilies -- all kinds of echinoderm -- to the calcium carbonate budget at the seabed. They estimate that the global production from all echinoderms is over a tenth (0.1) of a gigatonne of carbon per year -- that is, more than a hundred thousand million kilograms.

This is less than the total biological production in the main water column, or pelagic zone, which scientists believe to be between around 0.6 and 1.8 gigatonnes of carbon per year. But echinoderms apparently deliver more carbon to the sediments than do forams, for example. These microscopic animals live in vast numbers in the oceans and are traditionally regarded along with coccolithophores (single-celled marine plants surrounded by calcium carbonate plates) as one of the biggest contributors to the flux of calcium carbonate from the sunlit surface waters to the ocean's interior -- the so-called 'biological carbon pump'.

"Our research highlights the poor understanding of large-scale carbon processes associated with calcifying animals such as echinoderms and tackles some of the uncertainties in the oceanic calcium carbonate budget," says Lebrato: "The realisation that these creatures represent such a significant part of the ocean carbon sink needs to be taken into account in computer models of the biological pump and its effect on global climate."

There is a worry that ocean acidification due to increased carbon dioxide emissions from the burning of fossil fuels could reduce the amount of calcium carbonate incorporated into the skeletons of echinoderms and other calcifying organisms.

However, different echinoderm species respond to ocean acidification in different ways, and the effects of rising temperatures can be as significant as those of rising carbon dioxide. How this will affect the global carbon sink remains to be established.

Lebrato concludes: "The scientific community needs to reconsider the role of benthic processes in the marine calcium carbonate cycle. This is a crucial but understudied compartment of the global marine carbon cycle, which has been of key importance throughout Earth history and it is still at present."

The authors are: Mario Lebrato (NOCS/SOES), Debora Iglesias-Rodrνguez (NOCS/SOES), Richard Feely (Pacific Marine Environmental Laboratory/National Oceanic and Atmospheric Administration,, Seattle), Dana Greeley (NOCS/SOES), Daniel Jones (NOCS), Nadia Suarez-Bosche (NOCS/SOES), Richard Lampitt (NOCS), Joan Cartes (Institut de Ciθncies del Mar de Barcelona), Darryl Green (NOCS) and Belinda Alker (NOCS).


Story Source:

The above story is based on materials provided by National Oceanography Centre, Southampton (UK). Note: Materials may be edited for content and length.


Journal Reference:

  1. Mario Lebrato, Debora Iglesias-Rodriguez, Richard Feely, Dana Greeley, Daniel Jones, Nadia Suarez-Bosche, Richard Lampitt, Joan Cartes, Darryl Green, and Belinda Alker. Global contribution of echinoderms to the marine carbon cycle: a re-assessment of the oceanic CaCO3 budget and the benthic compartments. Ecological Monographs, 2009; 091222124538045 DOI: 10.1890/09-0553

Cite This Page:

National Oceanography Centre, Southampton (UK). "Echinoderms contribute to global carbon sink; impact of marine creatures underestimated." ScienceDaily. ScienceDaily, 9 January 2010. <www.sciencedaily.com/releases/2010/01/100108101425.htm>.
National Oceanography Centre, Southampton (UK). (2010, January 9). Echinoderms contribute to global carbon sink; impact of marine creatures underestimated. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2010/01/100108101425.htm
National Oceanography Centre, Southampton (UK). "Echinoderms contribute to global carbon sink; impact of marine creatures underestimated." ScienceDaily. www.sciencedaily.com/releases/2010/01/100108101425.htm (accessed April 21, 2014).

Share This



More Earth & Climate News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ocean Drones Making Waves in Research World

Ocean Drones Making Waves in Research World

AP (Apr. 21, 2014) — Two California companies are developing unmanned watercraft to study the ocean. The ocean drones can stay at sea for months to gather scientific data, patrol borders and protect endangered reefs. (April 21) Video provided by AP
Powered by NewsLook.com
Drought Concerns May Hurt Lake Tourism

Drought Concerns May Hurt Lake Tourism

AP (Apr. 18, 2014) — Operators of recreational businesses on western reservoirs worry that ongoing drought concerns will keep boaters and other visitors from flocking to the popular summer attractions. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) — Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) — Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins