Featured Research

from universities, journals, and other organizations

New findings may shed light on brain and spinal cord birth defects

Date:
January 20, 2010
Source:
Cell Press
Summary:
New research provides intriguing insight into how the nervous system forms during very early embryonic development. The study sheds light on a process called neural tube closure which, when disrupted, causes congenital birth defects of the brain and spinal cord, including anencephaly and spina bifida.

New research, published by Cell Press in the January 19th issue of the journal Developmental Cell, provides intriguing insight into how the nervous system forms during very early embryonic development. The study sheds light on a process called neural tube closure which, when disrupted, causes congenital birth defects of the brain and spinal cord, including anencephaly and spina bifida.

Related Articles


During normal embryonic development, a flat sheet of cells that is destined to give rise to the brain and spinal cord thickens and forms a groove with raised sides. Eventually, the sides of the groove fuse, almost like zipping a zipper, to form a hollow structure called the neural tube. If the neural tube does not "zip up" completely, it causes the brain and spinal cord to develop abnormally, resulting in defects that that range in severity from partial paralysis to death. These neural tube defects are relatively common, representing serious problems for 1/1000 live human births.

Details about what drives formation of the neural tube have remained elusive. But now, a study led by Drs. Eric Camerer and Shaun R. Coughlin from the Cardiovascular Research Institute at the University of California, San Francisco has shown that proteins called protease-activated receptors (PARs), which are best known for their role in tissue response to injury in adults, are required for neural tube closure. The researchers found that mice lacking specific PARs exhibited neural tube defects.

Interestingly, specific PARs and the protein that controls them were only active along the edges of the groove where and when the edges of the neural tube fused. These observations led the researchers to hypothesize that this PAR signaling system might sense the integrity of the tissue, as it does in the case of injuries, to regulate the closure of the tube. "Our discovery of molecular events that contribute to neural tube closure in mice might lead to insights into the complex mechanisms underlying human neural tube defects," concludes Dr. Coughlin.

The researchers include Eric Camerer, University of California, San Francisco, San Francisco, CA, INSERM, Paris Cardiovascular Research Center, Paris, France; Adrian Barker, University of California, San Francisco, San Francisco, CA; Daniel N. Duong, University of California, San Francisco, San Francisco, CA; Rajkumar Ganesan, Genentech, Inc., South San Francisco, CA; Hiroshi Kataoka, University of California, San Francisco, San Francisco, CA; Ivo Cornelissen, University of California, San Francisco, San Francisco, CA; Molly R. Darragh, University of California, San Francisco, San Francisco, CA; Arif Hussain, University of California, San Francisco, San Francisco, CA; Yao-Wu Zheng, University of California, San Francisco, San Francisco, CA; Yoga Srinivasan, University of California, San Francisco, San Francisco, CA; Christopher Brown, University of California, San Francisco, San Francisco, CA; Shan-Mei Xu, University of California, San Francisco, San Francisco, CA; Jean B. Regard, University of California, San Francisco, San Francisco, CA; Chen-Yong Lin, University of Maryland, Baltimore, MD; Charles S. Craik, University of California, San Francisco, San Francisco, CA; Daniel Kirchhofer, Genentech, Inc., South San Francisco, CA; and Shaun R. Coughlin, University of California, San Francisco, San Francisco, CA.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Camerer et al. Local Protease Signaling Contributes to Neural Tube Closure in the Mouse Embryo. Developmental Cell, 2010; 18 (1): 25-38 DOI: 10.1016/j.devcel.2009.11.014

Cite This Page:

Cell Press. "New findings may shed light on brain and spinal cord birth defects." ScienceDaily. ScienceDaily, 20 January 2010. <www.sciencedaily.com/releases/2010/01/100119121202.htm>.
Cell Press. (2010, January 20). New findings may shed light on brain and spinal cord birth defects. ScienceDaily. Retrieved April 22, 2015 from www.sciencedaily.com/releases/2010/01/100119121202.htm
Cell Press. "New findings may shed light on brain and spinal cord birth defects." ScienceDaily. www.sciencedaily.com/releases/2010/01/100119121202.htm (accessed April 22, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Wednesday, April 22, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Research Says Complex Tools Might Not Be 'Our Thing' Anymore

Research Says Complex Tools Might Not Be 'Our Thing' Anymore

Newsy (Apr. 21, 2015) The use of complex tools has often been seen as a defining characteristic of humanity, but that notion is now in question. Video provided by Newsy
Powered by NewsLook.com
Our Love Of Puppy Dog Eyes Explained By Science

Our Love Of Puppy Dog Eyes Explained By Science

Newsy (Apr. 17, 2015) Researchers found a spike in oxytocin occurs in both humans and dogs when they gaze into each other&apos;s eyes. Video provided by Newsy
Powered by NewsLook.com
Scientists Find Link Between Gestational Diabetes And Autism

Scientists Find Link Between Gestational Diabetes And Autism

Newsy (Apr. 17, 2015) Researchers who analyzed data from over 300,000 kids and their mothers say they&apos;ve found a link between gestational diabetes and autism. Video provided by Newsy
Powered by NewsLook.com
Video Messages Help Reassure Dementia Patients

Video Messages Help Reassure Dementia Patients

AP (Apr. 17, 2015) Family members are prerecording messages as part of a unique pilot program at the Hebrew Home in New York. The videos are trying to help victims of Alzheimer&apos;s disease and other forms of dementia break through the morning fog of forgetfulness. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins