Featured Research

from universities, journals, and other organizations

Discovery of algae's toxic hunting habits could help curb fish kills

Date:
January 26, 2010
Source:
Johns Hopkins University
Summary:
A microbe commonly found in the Chesapeake Bay and other waterways emits a poison not just to protect itself but to stun and immobilize the prey it plans to eat.

A microbe commonly found in the Chesapeake Bay and other waterways emits a poison not just to protect itself but to stun and immobilize the prey it plans to eat, a team of researchers from four universities has discovered. The findings about algae linked to massive fish kills could lead to new ways to slow the growth of these tiny but toxic marine creatures.

The researchers studied the behavior of the algal cell Karlodinium veneficum, known as a dinoflagellate and found in estuaries worldwide. Each year millions of dollars are spent on measures to control dinoflagellates around the globe. This particular species is known to release a substance called karlotoxin, which is extremely damaging to the gills of fish. Karlodinium veneficum has been known to form large algal blooms in the Chesapeake and elsewhere, triggering an immediate harmful impact on aquatic life, including fish kills.

"This new research opens the door to reducing bloom frequency and intensity by reducing the availability of its prey," said Allen Place of the Institute of Marine and Environmental Technology at the University of Maryland Center for Environmental Science. "As we reduce the nutrient load feeding Karlodinium's prey and bring back the bay's most prolific filter feeder, the Eastern oyster, we could essentially limit Karlodinium's ability to bloom."

Place, in whose laboratory karlotoxin was discovered and characterized, was a co-author of the new study, published this week in the online Early Edition of the Proceedings of the National Academy of Sciences. Other researchers involved in the study came from the University of Minnesota, The Johns Hopkins University and the University of Hawaii.

"This is a major environmental problem, but we didn't know why these microbes were producing the toxins in the first place," said Joseph Katz, the William F. Ward Sr. Professor in the Department of Mechanical Engineering at Johns Hopkins and a co-author of the paper. "Some people thought they were just using the toxins to scare away other predators and protect themselves. But with this new research, we've provided clear evidence that this species of K. veneficum is using the toxin to stun and capture its prey."

Historically, scientists have found it difficult to study the behavior of these tiny animals because the single-cell creatures can quickly swim out of a microscope's shallow field of focus. But in recent years this problem has been solved through the use of digital holographic microscopy, which can capture three-dimensional images of the troublesome microbes. The technique was pioneered by Katz.

In a study published in 2007, Katz, Place and Jian Sheng, who was Katz's doctoral student, were part of a team that reported the use of digital holographic microscopy to view the swimming behavior of K. veneficum and Pfiesteria piscicida. At the time, it appeared that K. veneficum slowed down into a "stealth mode" in order to ambush its prey while P. piscicida sped up to capture prey.

For the new paper, in which Sheng is lead author, the researchers used the same technique to more closely study the relationship between K. veneficum and its prey, a common, single-celled algal cell called a cryptophyte. They found that K. veneficum microbes release toxins to stun and immobilize their prey prior to ingestion, probably to increase the success rate of their hunt and to promote their growth.

This significantly shifts the understanding about what permits harmful algal blooms to form and grow, the researchers said. Instead of being a self-defense mechanism, the microbes' production of poison appears to be more closely related to growth through the ingestion of a "pre-packaged" food source, the cryptophyte cell, they concluded.

"In the paper, we have answered why these complicated [toxic] molecules are made in nature in the first place and identify a possible alternative mechanism causing massive bloom," said Sheng, who is now a faculty member in the University of Minnesota's Department of Aerospace Engineering and Mechanics.

Other co-authors of the PNAS paper are Edwin Malkiel, an adjunct associate research scientist in the Department of Mechanical Engineering at Johns Hopkins; and Jason E. Adolf, an assistant professor in the University of Hawaii's Department of Marine Science.

Funding for the research was provided by the National Science Foundation and the National Oceanic and Atmospheric Administration's Coastal Oceans Program.


Story Source:

The above story is based on materials provided by Johns Hopkins University. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins University. "Discovery of algae's toxic hunting habits could help curb fish kills." ScienceDaily. ScienceDaily, 26 January 2010. <www.sciencedaily.com/releases/2010/01/100121140342.htm>.
Johns Hopkins University. (2010, January 26). Discovery of algae's toxic hunting habits could help curb fish kills. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2010/01/100121140342.htm
Johns Hopkins University. "Discovery of algae's toxic hunting habits could help curb fish kills." ScienceDaily. www.sciencedaily.com/releases/2010/01/100121140342.htm (accessed August 21, 2014).

Share This




More Plants & Animals News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) — According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com
Lost Brain Cells To Blame For Sleep Problems Among Seniors

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Newsy (Aug. 21, 2014) — According to a new study, elderly people might have trouble sleeping because of the loss of a certain group of neurons in the brain. Video provided by Newsy
Powered by NewsLook.com
Ramen Health Risks: The Dark Side of the Noodle

Ramen Health Risks: The Dark Side of the Noodle

AP (Aug. 21, 2014) — South Koreans eat more instant ramen noodles per capita than anywhere else in the world. But American researchers say eating too much may increase the risk of diabetes, heart disease and stroke. (Aug. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins