Featured Research

from universities, journals, and other organizations

Advanced engine-control system reduces biodiesel fuel consumption and emissions

Date:
January 27, 2010
Source:
Purdue University
Summary:
Researchers have developed an advanced "closed-loop control" approach for preventing diesel engines from emitting greater amounts of smog-causing nitrogen oxides when running on biodiesel fuels.

Gregory M. Shaver, from left, an assistant professor of mechanical engineering at Purdue, and graduate student David Snyder discuss how to modify a commercial diesel engine with a new technique that promises to reduce emissions of nitrogen oxides for engines running on biodiesel. Graduate student Gayatri Adi (background) reviews software algorithms needed for the new technology.
Credit: Purdue News Service file photo

Researchers from Purdue University and Cummins Inc. have developed an advanced "closed-loop control" approach for preventing diesel engines from emitting greater amounts of smog-causing nitrogen oxides when running on biodiesel fuels.

Operating truck engines on a blend of biodiesel and ordinary diesel fuel dramatically reduces the emission of particulate matter, or soot. However, the most modern and efficient diesel engines burning biodiesel emit up to 40 percent more nitrogen oxides at some operating conditions, and fuel economy declines by as much as 20 percent.

Unlike conventional diesel, biodiesel contains oxygen, and the researchers have shown that this presence of oxygen is responsible for the majority of the higher emission of nitrogen oxides, said Gregory Shaver, an assistant professor of mechanical engineering.

Another key factor is a recent innovation called exhaust gas recirculation, which reroutes exhaust back into the engine cylinders to reduce emissions. The researchers found that nitrogen oxide emissions rise by a higher percentage in engines equipped with this exhaust-recirculation technology compared with older engines that do not. However, the newer engines still emit less nitrogen oxides than the older engines.

The research addresses the need to reduce nitrogen oxide emissions and fuel consumption. Researchers at Purdue's Ray W. Herrick Laboratories used a Cummins 6.7-liter, six-cylinder diesel engine, a popular power plant found in Dodge Ram pickup trucks.

"We were able to improve the fuel economy with a biodiesel blend while reducing nitrogen oxides to where they were with conventional diesel," Shaver said. "At the same time, we were able to maintain the customary biodiesel reductions in particulate matter emissions compared to ordinary diesel fuel while not increasing noise emissions."

Fuel economy still is problematic, however, because biodiesel has 10 percent to 12 percent lower "energy density," or the amount of energy liberated during combustion, compared to regular diesel fuel, he said.

"This means you get lower mileage for biodiesel compared to ordinary diesel fuel," Shaver said. "We improved the combustion efficiency and were able to get better mileage than before, but still not as good as conventional diesel fuel."

Findings are detailed in a research paper that has been posted online and that will appear in an upcoming issue of the American Chemical Society journal Energy & Fuels. Researchers from Purdue and Cummins also authored a related paper regarding soy biodiesel blends that appeared online in October in the same journal.

The researchers developed a physics-based, closed-loop control technique -- which means the system uses advanced models to self-adjust engine settings based on feedback from sensors. Software algorithms use data from the sensors to determine the fuel blend being combusted. If the fuel is changed, the system identifies the new fuel and makes critical adjustments to fuel-injection timing, the air-to-fuel ratio and how much exhaust is rerouted into the cylinders.

"You need to be able to estimate what the blend ratio is so you know what's going on in the engine," Shaver said. "Is it 20 percent biodiesel fuel mixed with 80 percent regular fuel? Then we can do something to reduce the nitrogen oxides to levels consistent with a conventional fuel that didn't have oxygen in it."

Most late-model cars and trucks already are equipped with both oxygen sensors in their exhaust systems and sophisticated electronic control modules, making the technique applicable for both current and future vehicles, Shaver said.

"It just adds another wrinkle or two of extra intelligence to an engine's electronic control module," Shaver said.

The researchers extensively tested and simulated four blend ratios of biodiesel, focusing on soy-based fuel, which is the most commonly used biodiesel in the United States. The approach also could be used for other types of fuels and engines, including advanced lean-burn gasoline engines running on ethanol-gasoline blends.

The paper was written by graduate student Michael Bounce; doctoral students David Snyder, Gayatri Adi and Carrie Hall; undergraduate students Jeremy Koehler and Bernabe Davila; Cummins engineers Shankar Kumar, Phanindra Garimella and Donald Stanton; and Shaver.

Purdue has filed one full patent and one provisional patent related to the technique. The engine-control framework is ready for commercial use, and the researchers are working with engineers at Cummins Inc., Shaver said.

The Purdue team also is studying how the techniques might be extended to electricity power generation and other alternative fuels.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Journal References:

  1. Adi et al. Soy-Biodiesel Impact on NOx Emissions and Fuel Economy for Diffusion-Dominated Combustion in a Turbo-Diesel Engine Incorporating Exhaust Gas Recirculation and Common Rail Fuel Injection. Energy & Fuels, 2009; 23 (12): 5821 DOI: 10.1021/ef9006609
  2. Bunce et al. Stock and Optimized Performance and Emissions with 5 and 20% Soy Biodiesel Blends in a Modern Common Rail Turbo-Diesel Engine. Energy & Fuels, 2009; 091221180906019 DOI: 10.1021/ef9011033

Cite This Page:

Purdue University. "Advanced engine-control system reduces biodiesel fuel consumption and emissions." ScienceDaily. ScienceDaily, 27 January 2010. <www.sciencedaily.com/releases/2010/01/100125173248.htm>.
Purdue University. (2010, January 27). Advanced engine-control system reduces biodiesel fuel consumption and emissions. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2010/01/100125173248.htm
Purdue University. "Advanced engine-control system reduces biodiesel fuel consumption and emissions." ScienceDaily. www.sciencedaily.com/releases/2010/01/100125173248.htm (accessed September 2, 2014).

Share This




More Matter & Energy News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Teases India Event, Possible Android One Reveal

Google Teases India Event, Possible Android One Reveal

Newsy (Sep. 1, 2014) Google has announced a Sept. 15 event in India during which they're expected to reveal their Android One phones. Video provided by Newsy
Powered by NewsLook.com
Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins