Featured Research

from universities, journals, and other organizations

How many argon atoms can fit on the surface of a carbon nanotube?

Date:
January 29, 2010
Source:
University of Washington
Summary:
Scientists have devised a way to explore how phase transitions -- changes of matter from one state to another without altering chemical makeup -- function in less than three dimensions and at the level of just a few atoms.

Phase transitions -- changes of matter from one state to another without altering its chemical makeup -- are an important part of life in our three-dimensional world. Water falls to the ground as snow, melts to a liquid and eventually vaporizes back to the clouds to begin the cycle anew.

Now a team of scientists has devised a new way to explore how such phase transitions function in less than three dimensions and at the level of just a few atoms. They hope the technique will be useful to test aspects of what until now has been purely theoretical physics, and they hope it also might have practical applications for sensing conditions at very tiny scales, such as in a cell membrane.

They worked with single-walled carbon nanotubes, extremely thin, hollow graphite structures that can be so tiny that they are nearly one-dimensional, to study the phase transition behavior of argon and krypton atoms.

"The physics can be quite different in fewer than three dimensions," said David Cobden, an associate professor of physics at the University of Washington and corresponding author of a paper describing the work published Jan. 29 in Science.

Co-authors, all from the UW, are Zenghui Wang, Jiang Wei, Peter Morse, J. Gregory Dash and Oscar Vilches.

For their observations, the group used carbon nanotubes, microscopic cylinders that have some thickness but are very close to being one-dimensional.

Phase transitions change the density of atoms. In the vapor form, there are fewer atoms and they are loosely packed. Liquid has more atoms and they are more tightly packed. The solid is a crystal formed of very tightly packed atoms. To determine the phase of the argon and krypton atoms, the researchers used the carbon nanotube much like a guitar string stretched over a fret. A nearby piece of conducting metal applied an electrical force to oscillate the string, and the scientists measured the current to "listen" as the vibration frequency changed -- a greater mass of atoms sticking to the nanotube surface produced a lower frequency.

"You listen to this nano guitar and as the pitch goes down you know there are more atoms sticking to the surface," Cobden said. "In principle you can hear one atom landing on the tube -- it's that sensitive."

The researchers also found that the nanotube's electrical resistance changed when krypton atoms stuck to the surface.

In the future, the scientists hope to be able to see how the atoms, as they populate the carbon nanotube, react to each other through various phase transitions, and also how they interact with the pure carbon graphite of the nanotube. They expect to see some significant differences in experiments approaching one dimension from those in two or three dimensions.

"For example, matter can freeze in 3-D and in 2-D, but theoretically it should not freeze in 1-D," Cobden said.

Besides providing a test bed for physics theories, the work also could be useful for sensing applications, such as nanoscale measurements in various fluid environments, examining functions within cell membranes or probing within nerves.

"Nanotubes allow you to probe things at the subcellular level," Cobden said.

The work was funded by the National Science Foundation, the American Chemical Society Petroleum Research Fund, the UW Royalty Research Fund and the UW University Initiatives Fund.


Story Source:

The above story is based on materials provided by University of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University of Washington. "How many argon atoms can fit on the surface of a carbon nanotube?." ScienceDaily. ScienceDaily, 29 January 2010. <www.sciencedaily.com/releases/2010/01/100128142128.htm>.
University of Washington. (2010, January 29). How many argon atoms can fit on the surface of a carbon nanotube?. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2010/01/100128142128.htm
University of Washington. "How many argon atoms can fit on the surface of a carbon nanotube?." ScienceDaily. www.sciencedaily.com/releases/2010/01/100128142128.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins