Featured Research

from universities, journals, and other organizations

Quantum mechanics at work in photosynthesis: Algae familiar with these processes for nearly two billion years

Date:
February 4, 2010
Source:
University of Toronto
Summary:
Chemists have made a major contribution to the emerging field of quantum biology, observing quantum mechanics at work in photosynthesis in marine algae.

Phytoplankton.
Credit: NOAA MESA Project

A team of University of Toronto chemists have made a major contribution to the emerging field of quantum biology, observing quantum mechanics at work in photosynthesis in marine algae.

"There's been a lot of excitement and speculation that nature may be using quantum mechanical practices," says chemistry professor Greg Scholes, lead author of a new study published in Nature. "Our latest experiments show that normally functioning biological systems have the capacity to use quantum mechanics in order to optimize a process as essential to their survival as photosynthesis."

Special proteins called light-harvesting complexes are used in photosynthesis to capture sunlight and funnel its energy to nature's solar cells -- other proteins known as reaction centres. Scholes and his colleagues isolated light-harvesting complexes from two different species of marine algae and studied their function under natural temperature conditions using a sophisticated laser experiment known as two-dimensional electronic spectroscopy.

"We stimulated the proteins with femtosecond laser pulses to mimic the absorption of sunlight," explains Scholes. "This enabled us to monitor the subsequent processes, including the movement of energy between special molecules bound in the protein, against a stop-clock. We were astonished to find clear evidence of long-lived quantum mechanical states involved in moving the energy. Our result suggests that the energy of absorbed light resides in two places at once -- a quantum superposition state, or coherence -- and such a state lies at the heart of quantum mechanical theory."

"This and other recent discoveries have captured the attention of researchers for several reasons," says Scholes. "First, it means that quantum mechanical probability laws can prevail over the classical laws of kinetics in this complex biological system, even at normal temperatures. The energy can thereby flow efficiently by -- counter intuitively -- traversing several alternative paths through the antenna proteins simultaneously. It also raises some other potentially fascinating questions, such as, have these organisms developed quantum-mechanical strategies for light-harvesting to gain an evolutionary advantage? It suggests that algae knew about quantum mechanics nearly two billion years before humans," says Scholes.

Scholes' colleagues in the research at the University of Toronto include Elisabetta Collini, Cathy Y. Wong, and Paul Brumer. Other team members include Paul Curmi and Krystyna Wilk of the University of New South Wales. The research was funded with support from the Natural Sciences and Engineering Research Council of Canada, in part by a Steacie Fellowship awarded to Scholes.


Story Source:

The above story is based on materials provided by University of Toronto. The original article was written by Sean Bettam. Note: Materials may be edited for content and length.


Journal Reference:

  1. Elisabetta Collini, Cathy Y. Wong, Krystyna E. Wilk, Paul M. G. Curmi, Paul Brumer & Gregory D. Scholes. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature, 2010; 463 (7281): 644 DOI: 10.1038/nature08811

Cite This Page:

University of Toronto. "Quantum mechanics at work in photosynthesis: Algae familiar with these processes for nearly two billion years." ScienceDaily. ScienceDaily, 4 February 2010. <www.sciencedaily.com/releases/2010/02/100203131356.htm>.
University of Toronto. (2010, February 4). Quantum mechanics at work in photosynthesis: Algae familiar with these processes for nearly two billion years. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2010/02/100203131356.htm
University of Toronto. "Quantum mechanics at work in photosynthesis: Algae familiar with these processes for nearly two billion years." ScienceDaily. www.sciencedaily.com/releases/2010/02/100203131356.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins