Featured Research

from universities, journals, and other organizations

Plant derivative could help refine cancer treatment

Date:
February 9, 2010
Source:
Medical College of Georgia
Summary:
Researchers are seeking to refine cancer treatment with an anti-inflammatory plant derivative long used in Chinese medicine.

Celastrol, derived from trees and shrubs called celastracaea, has been used for centuries in China to treat symptoms such as fever, chills, joint pain and inflammation. Medical College of Georgia researchers think it may also play a role in cancer treatment by inactivating a protein required for cancer growth.
Credit: Medical College of Georgia

Medical College of Georgia researchers are seeking to refine cancer treatment with an anti-inflammatory plant derivative long used in Chinese medicine.

Related Articles


Celastrol, derived from trees and shrubs called celastracaea, has been used for centuries in China to treat symptoms such as fever, chills, joint pain and inflammation. The MCG researchers think it may also play a role in cancer treatment by inactivating a protein required for cancer growth.

That protein, P23, is one of many proteins helping the heat shock protein 90. Scientists are just beginning to realize the potential of controlling inflammation-related diseases, including cancer, by inhibiting HSP90.

"Cancer cells need HSP90 more than normal cells because cancer cells have thousands of mutations," said Dr. Ahmed Chadli, biochemist in the MCG Center for Molecular Chaperones/Radiobiology and Cancer Virology. "They need chaperones all the time to keep their mutated proteins active. By taking heat shock proteins away from cells, the stabilization is taken away and cell death occurs."

But most HSP90 inhibitors lack selectivity, disabling the functions of all proteins activated by HSP90 rather than only the ones implicated in a specific tumor. Those proteins vary from one tumor to another.

Dr. Chadli and colleagues at the Mayo Clinic believe celastrol holds the key to specificity, targeting the HSP90-activated protein required for folding steroid receptors.

"The celastrol induces the protein to form fibrils and clusters it together, which inactivates it," said Dr. Chadli, whose research was published in the January edition of The Journal of Biological Chemistry. "When they are clustered, they're not available for other functions that help cancer grow."

The research was funded by a seed grant from the MCG Cardiovascular Discovery Institute and a Scientist Development Grant from The American Heart Association.

Dr. Chadli envisions future studies on cancer patients using even more potent derivatives of celastrol.

"They can hopefully be used in combination with other therapeutic agents to reduce the probability of cancer resistance," he said.


Story Source:

The above story is based on materials provided by Medical College of Georgia. Note: Materials may be edited for content and length.


Cite This Page:

Medical College of Georgia. "Plant derivative could help refine cancer treatment." ScienceDaily. ScienceDaily, 9 February 2010. <www.sciencedaily.com/releases/2010/02/100203161432.htm>.
Medical College of Georgia. (2010, February 9). Plant derivative could help refine cancer treatment. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2010/02/100203161432.htm
Medical College of Georgia. "Plant derivative could help refine cancer treatment." ScienceDaily. www.sciencedaily.com/releases/2010/02/100203161432.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins