Featured Research

from universities, journals, and other organizations

Researchers identify mechanism malaria parasite uses to spread among red blood cells

Date:
February 22, 2010
Source:
University of California - Riverside
Summary:
Malaria remains one of the most deadly infectious diseases. Yet, how Plasmodium, the malaria parasite, regulates its infectious cycle has remained an enigma despite decades of rigorous research. Now a research team has identified a mechanism by which Plasmodium intensively replicates itself in human blood to spread the disease. The discovery could lead to new drugs for combating the disease.

Infected human red blood cells (top; and right of center) by the human malaria parasite, Plasmodium falciparum (the parasite is shown in purple). The newly-formed parasites (left of center) are ready to invade new red blood cells.
Credit: Le Roch lab, UC Riverside.

Malaria remains one of the most deadly infectious diseases. Yet, how Plasmodium, the malaria parasite, regulates its infectious cycle has remained an enigma despite decades of rigorous research.

Related Articles


But now a research team led by a cell biologist at the University of California, Riverside has identified a mechanism by which Plasmodium intensively replicates itself in human blood to spread the disease.

"If this mechanism can be stopped," said Karine Le Roch, an assistant professor of cell biology and neuroscience, who led the research, "Plasmodium replication would cease or be severely inhibited, thus controlling the spread of malaria."

In the cells of eukaryotes, such as the unicellular Plasmodium and humans, DNA, which can be as long as two meters, is closely packed to fit into the cell's tiny nucleus. Huge complex proteins called nucleosomes facilitate this DNA compaction so that eventually the DNA is coiled in an ordered manner to form chromosomes.

Made up of histone, a kind of protein, the nucleosomes are repeating units around which the double helix of DNA gets wrapped and vast amounts of genetic information get organized.

In trying to understand how the malaria parasite multiplies in red blood cells, Le Roch's team found that in Plasmodium a kind of "histone crash" takes place -- a massive breakdown of histone that explains how the parasite can replicate extensively its DNA and coding gene in human red blood cells.

For cell multiplication to occur, the genes in a DNA strand need to first be transcribed and translated (converted) into protein. For this transcription to take place, however, the nucleosomes must first get evicted (removed), a process that opens up the DNA strand to give special "transcription factors" full access to the genes. The transcription factors then convert these genes into protein.

While in humans such eviction of nucleosomes is specific to only some sections of the DNA strand and performed only when needed, in Plasmodium the situation is vastly different.

Le Roch's experiments in the lab show that 18 hours after Plasmodium enters a red blood cell, a huge eviction of nucleosomes occurs in the Plasmodium DNA. Gene transcription throughout the genome follows; after multiplication into up to 32 daughter cells, the newly-formed parasites are ready to exit the red blood cell and invade new ones about 18 hours later.

"We found in our experiments that histones are massively evicted everywhere in the Plasmodium genome, resulting in most of the Plasmodium genes to be transcribed at once," Le Roch said. "If we can find a candidate enzyme that can regulate this massive histone eviction, we could halt or greatly limit Plasmodium replication."

Study results appear this month in the journal Genome Research.

"Dr. Le Roch's findings document a global mechanism mediating significant changes in gene expression as the parasites transition through developmental stages in the human hosts," said Anthony A. James, a distinguished professor of microbiology & molecular genetics and molecular biology & biochemistry at UC Irvine, who was not involved in the research. "As well as being a major basic discovery, this provides a basis for probing the mechanisms for novel drug development."


Story Source:

The above story is based on materials provided by University of California - Riverside. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nadia Ponts, Elena Y. Harris, Jacques Prudhomme, Ivan Wick, Colleen Eckhardt-Ludka, Glenn R. Hicks, Gary Hardiman, Stefano Lonardi, and Karine G. Le Roch. Nucleosome landscape and control of transcription in the human malaria parasite. Genome Research, 2010; 20 (2): 228 DOI: 10.1101/gr.101063.109

Cite This Page:

University of California - Riverside. "Researchers identify mechanism malaria parasite uses to spread among red blood cells." ScienceDaily. ScienceDaily, 22 February 2010. <www.sciencedaily.com/releases/2010/02/100218173325.htm>.
University of California - Riverside. (2010, February 22). Researchers identify mechanism malaria parasite uses to spread among red blood cells. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2010/02/100218173325.htm
University of California - Riverside. "Researchers identify mechanism malaria parasite uses to spread among red blood cells." ScienceDaily. www.sciencedaily.com/releases/2010/02/100218173325.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN Says It Will Scale Up Its Ebola Response

UN Says It Will Scale Up Its Ebola Response

AFP (Nov. 20, 2014) UN Resident Coordinator David McLachlan-Karr and WHO representative in the country Daniel Kertesz updated the media on the UN Ebola response on Wednesday. Duration: 00:51 Video provided by AFP
Powered by NewsLook.com
Takata Offers "sincerest Condolences" To Victims of Malfunctioning Airbag

Takata Offers "sincerest Condolences" To Victims of Malfunctioning Airbag

Reuters - US Online Video (Nov. 20, 2014) U.S. Congress hears from a victim and company officials as it holds a hearing on the safety of Takata airbags after reports of injuries. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Obesity Costs Almost As Much As War And Terrorism

Obesity Costs Almost As Much As War And Terrorism

Newsy (Nov. 20, 2014) The newest estimate of the cost of obesity is pretty jarring — $2 trillion. But how did researchers get to that number? Video provided by Newsy
Powered by NewsLook.com
Calling All Men: Here's Your Chance to Experience Labor Pains

Calling All Men: Here's Your Chance to Experience Labor Pains

Reuters - Light News Video Online (Nov. 20, 2014) Chinese hospital offers men a chance to experience the pain of child birth via electric shocks. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins