Featured Research

from universities, journals, and other organizations

Genome analysis of marine microbe reveals a metabolic minimalist

Date:
March 13, 2010
Source:
University of California - Santa Cruz
Summary:
Flightless birds, blind cave shrimp, and other oddities suggest a "use it or lose it" tendency in evolution. In the microbial world, an unusual marine microorganism appears to have ditched several major metabolic pathways, leaving it with a remarkably reduced set of genes.

Samples collected from the open ocean indicate that UCYN-A cyanobacteria are periodically abundant in tropical and subtropical waters throughout the world.

Flightless birds, blind cave shrimp, and other oddities suggest a "use it or lose it" tendency in evolution. In the microbial world, an unusual marine microorganism appears to have ditched several major metabolic pathways, leaving it with a remarkably reduced set of genes.

Related Articles


This metabolic minimalist is a specialist uniquely suited to performing one very important function: taking nitrogen gas from the atmosphere and "fixing" it into a form that makes this essential nutrient available to other organisms. Nitrogen fixation fertilizes the oceans, controlling overall biological productivity and thereby affecting how much carbon dioxide the oceans absorb from the atmosphere.

Jonathan Zehr, the marine microbiologist who discovered the microbe, said it has stubbornly resisted efforts to grow it in the laboratory. But that hasn't stopped his team from determining the complete DNA sequence of its genome. Genome analysis enabled the researchers to reconstruct the organism's unusual metabolic lifestyle. They published their findings in Nature in a paper available online February 21.

Zehr, a professor of ocean sciences at the University of California, Santa Cruz, characterized the microbe as an atypical member of the cyanobacteria, a group of photosynthetic bacteria formerly known as blue-green algae. Still lacking a formal taxonomic classification, it is known only as UCYN-A. First detected in the open ocean near Hawaii in 1998, it is now known to be periodically abundant in tropical and subtropical waters throughout the world.

"Biogeochemists have never been able to balance the nitrogen budget of the oceans--there seems to be more nitrogen produced than we can account for from known organisms. So this organism may be an important part of the overall nitrogen budget," Zehr said.

In a 2008 paper in Science, Zehr's team reported that UCYN-A is completely lacking the genes for a key component of the photosynthetic apparatus. The missing parts, known as photosystem II, carry out the stage in photosynthesis that generates oxygen by splitting water molecules. This is significant because oxygen inhibits nitrogen fixation. Most nitrogen-fixing cyanobacteria carry out photosynthesis during the day and nitrogen fixation at night, but UCYN-A can fix nitrogen all day long.

The new paper extends the list of UCYN-A's missing metabolic pathways to include, among other things, a process central to aerobic metabolism known as the TCA cycle or Krebs cycle. It also lacks the Calvin cycle, which uses the carbon from carbon dioxide to build sugars, and it is unable to synthesize about half of the 20 essential amino acids.

"This thing is really stripped down," said James Tripp, a bioinformatics specialist at UCSC and lead author of the Nature paper. "My analysis indicates it has to have an outside source to obtain sugars, amino acids, and two out of the four bases needed to make DNA."

Tripp performed the genome analysis reported in the paper. He worked closely with scientists at 454 Life Sciences, a Roche company based in Branford, Conn., that specializes in high-throughput DNA sequencing technology. The researchers applied new genome sequencing and assembly techniques to produce the complete genome sequence from natural samples of DNA. Because UCYN-A cannot be cultured, researchers used a cell-sorting technique called flow cytometry to obtain concentrated samples of the microbe from ocean water, and then extracted DNA from the cells for sequencing.

Although UCYN-A must depend on other organisms for key nutrients, the researchers have found no evidence that it lives in a close symbiotic association with another microorganism. Zehr said the failure to find another organism closely associated with it suggests two possibilities. "It might live in a cryptic association that's very hard to sample because it's fragile and just falls apart, or it may respond to blooms of other phytoplankton and live in the soup of nutrients excreted by other organisms," he said.

One of the striking things about UCYN-A's metabolism is that it lacks essential pathways other organisms use to generate energy for their cells. "Nitrogen fixation takes a lot of energy, but this thing has figured out how to fix nitrogen without the normal pathways used to fuel it in other organisms," Zehr said. "It presents a real evolutionary and ecological paradox."

In addition to Zehr and Tripp, the coauthors of the Nature paper include graduate student Shellie Bench, specialist Kendra Turk, and postdoctoral scholar Rachel Foster in Zehr's lab at UCSC, and Brian Desany, Faheem Niazi, and Jason Affourtit of 454 Life Sciences. This research was supported by the Gordon and Betty Moore Foundation, the National Science Foundation, and the NSF Center for Microbial Oceanography Research and Education.


Story Source:

The above story is based on materials provided by University of California - Santa Cruz. Note: Materials may be edited for content and length.


Journal Reference:

  1. H. James Tripp, Shellie R. Bench, Kendra A. Turk, Rachel A. Foster, Brian A. Desany, Faheem Niazi, Jason P. Affourtit, Jonathan P. Zehr. Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature, 2010; 464 (7285): 90 DOI: 10.1038/nature08786

Cite This Page:

University of California - Santa Cruz. "Genome analysis of marine microbe reveals a metabolic minimalist." ScienceDaily. ScienceDaily, 13 March 2010. <www.sciencedaily.com/releases/2010/02/100221143204.htm>.
University of California - Santa Cruz. (2010, March 13). Genome analysis of marine microbe reveals a metabolic minimalist. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2010/02/100221143204.htm
University of California - Santa Cruz. "Genome analysis of marine microbe reveals a metabolic minimalist." ScienceDaily. www.sciencedaily.com/releases/2010/02/100221143204.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Yellow-Spotted Turtles Rescued from Trafficking

Yellow-Spotted Turtles Rescued from Trafficking

Reuters - Light News Video Online (Nov. 24, 2014) Hundreds of Amazon River turtles released into the wild in Peru. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins