Featured Research

from universities, journals, and other organizations

Enzyme deficiency protects hepatitis C patients from treatment-related anemia

Date:
February 24, 2010
Source:
Duke University Medical Center
Summary:
Many people who undergo treatment for hepatitis C develop hemolytic anemia, a disorder that destroys red blood cells. In some cases, it is so severe they have to reduce their medication or stop therapy altogether. But now, scientists have discovered two genetic alterations linked to a benign enzyme condition that keep some patients anemia-free.

Many people who undergo treatment for hepatitis C develop hemolytic anemia, a disorder that destroys red blood cells. In some cases, it is so severe they have to reduce their medication or stop therapy altogether. But now, scientists in Duke University's Institute for Genome Sciences & Policy (IGSP) have discovered two genetic alterations linked to a benign enzyme condition that keep some patients anemia-free.

They say the discovery, appearing online in the journal Nature, opens the door to treatment for patients who have never been considered candidates for therapy before and may also hold the key to new drugs that could prevent anemia from developing in the first place.

The protective mechanism is a deficiency in a gene called ITPA. "We found that patients who carried specific functional variants are strongly protected against developing anemia," says David Goldstein, Ph.D., director of the Center for Human Genome Variation in the IGSP and a senior author of the study.

Previous studies had identified the genetic variants as the cause of a deficiency in the production of an enzyme, inosine triphosphatase. But it was only through a genome-wide association study that the Duke team was able to show that these same variants were protective against anemia induced by ribavirin, one of two necessary drugs in hepatitis C treatment.

About 180 million people world-wide are infected with the hepatitis C virus, and about 30 to 40 percent of them could develop some degree of treatment-related anemia, according to John McHutchison, M.D. associate director for research at the Duke Clinical Research Institute and also a senior author. "It's a big problem. Hemolytic anemia reduces the level of hemoglobin in the blood and robs it of its ability to carry oxygen. Anything that could help us predict who is going to become anemic and who is not could help us better manage therapy and give all patients the best chance of a good outcome."

Goldstein and McHutchison, who had earlier worked together in identifying genetic variants that helped explain race-based differences in response to hepatitis C treatments, believed there was probably a gene-based solution to the anemia puzzle as well.

Working with first authors Jacques Fellay, M.D.; Alex Thompson, M.D., PhD.; and Dongliang Ge, Ph.D., investigators turned to a rich database already at hand: the records of 1286 individuals who had earlier taken part in the IDEAL study, a large, randomized, Duke-led clinical trial that compared leading therapies for hepatitis C.

Researchers separated the patients into three ethnic groups, (988 European Americans, 198 African Americans, and 100 Hispanic Americans) and analyzed their decline in hemoglobin levels during the first month of treatment.

The researchers conducted a genome-wide association study and found several polymorphisms -- single-letter DNA alterations -- also known as "SNPs or "snips" -associated with reduced hemoglobin levels. But finding an association is just a start: of more biological importance is the identification of the causal variants, the polymorphisms that directly influence hemoglobin levels. Investigators discovered that the two variants known to cause ITPA deficiency appeared almost exclusively on chromosomes that also carried the protective version of the most associated SNP. Further statistical analysis proved that the two variants were indeed the source of protection from anemia.

McHutchison says the discovery is clinically important. "The beauty of this finding is that it may mean we could consider offering treatment to patients who have additional problems, like coronary artery disease or kidney disease. Right now, we are generally uncomfortable treating these patients because anemia could make their underlying condition worse. If a test could tell us which patients are not going to become anemic, we could consider treating them."

"Most of us trace the birth of pharmacogenetics to a 1957 paper by Arno Moltulsky who argued that important drug responses may often depend on genetic differences among people that are invisible until an individual takes a certain drug," says Goldstein. "These ITPA variants reflect this classic formulation of pharmacogenetics, and suggest to us that there are many other important variants that can and should be found through the careful genetic analyses of patients' drug responses."

Colleagues from Duke who contributed to the study include Curtis Gumbs, Thomas Urban, Kevin Shianna, Latasha Little and Andrew Muir. Other co-authors include Mark Sulkowski, from Johns Hopkins; and Ping Qiu, Arthur Bertelsen, Mark Watson, Amelia Warner, Clifford Brass and Janice Albrecht, from Schering-Plough Research Institute.

Schering-Plough Research Institute funded the study and has filed a patent application based on the findings. Ten of the study authors, including Goldstein, Thompson, Ge, Fellay, Urban, Shianna and McHutchison, are listed as inventors on the application.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Duke University Medical Center. "Enzyme deficiency protects hepatitis C patients from treatment-related anemia." ScienceDaily. ScienceDaily, 24 February 2010. <www.sciencedaily.com/releases/2010/02/100221143232.htm>.
Duke University Medical Center. (2010, February 24). Enzyme deficiency protects hepatitis C patients from treatment-related anemia. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2010/02/100221143232.htm
Duke University Medical Center. "Enzyme deficiency protects hepatitis C patients from treatment-related anemia." ScienceDaily. www.sciencedaily.com/releases/2010/02/100221143232.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins