Featured Research

from universities, journals, and other organizations

Grass, fungus combination affects ecology

Date:
March 20, 2010
Source:
Rice University
Summary:
Fescue grass covers an area equivalent to 12 million football fields in the US, and a new study by ecologists shows that the grass and a symbiotic fungus can affect local ecosystems in significant ways. Study results show that the genetic identity of an invisible fungus living symbiotically in fescue can alter the surrounding composition and diversity of the plant community.

The popular forage and turf grass called tall fescue covers a vast amount of land in the U.S. -- an area that's estimated to be larger than Virginia and Maryland combined -- and a new study by ecologists at Rice University and Indiana University suggests there is more to fescue than meets the eye.

Related Articles


Results of the six-year study, which are available online in the Journal of Applied Ecology, show that a symbiotic fungus living inside fescue can have far-reaching effects on plant, animal and insect communities.

"Competition and environment have traditionally been seen as the driving forces for community dynamics, so it's significant to see that the composition and diversity of a plant community can be affected by changing a few genes in an invisible fungus inside one species of grass," said study co-author Jennifer Rudgers, Rice's Godwin Assistant Professor of Ecology and Evolutionary Biology. "This suggests that cooperative microorganisms should not be overlooked as significant contributors to ecological diversity."

Tall fescue is hearty, low-maintenance and stays green year-round, which makes it a favorite for home lawns, golf courses and highway rights-of-way across the U.S. But fescue, which is native to Europe and North Africa, can also be highly invasive in North America. It can also sicken livestock, thanks to a symbiotic fungus called Neotyphodium coenophialum. The fungus and fescue have a mutually beneficial relationship. The fungus lives inside the plant, where it gets shelter and food, and in return it laces the plant's leaves with toxic alkaloids that are a turnoff to some plant-eating animals.

In 2002, Rudgers and Indiana University ecologist Keith Clay, a study co-author, selected 42 grassland plots, each about 1,000 square feet, at the Indiana University Research and Teaching Preserve north of Bloomington, Ind. The researchers selected two varieties of fescue called Georgia-5 and Jesup, and two varieties of the fungus, called KY-31 and AR-542. KY-31 is a common variety that produces alkaloids that are toxic to mammals, and AR-542 naturally lacks these alkaloids. Additionally, some plots were planted with grass and no fungus.

Over the next six years, the team returned to the plots several times. The investigation was painstaking. In randomly selected areas, the researchers counted individual flowers, cataloged the number and species of every plant and even counted the number of stems of grass that had been gnawed by plant-eating voles.

The investigation offered specific results for conservation managers: Jesup with either fungus works best for maintaining a fescue monoculture; and if a symbiotic fungus is desirable, the combination of Georgia-5 and AR-542 supports maximum plant diversity and minimal invasiveness.

The study also suggested that the ecological effects of plant-microbe symbiosis aren't easy to predict. For example, the researchers found that voles were less likely to eat fescue that contained either fungus, including the AR-542 variety, which lacks mammal-toxic alkaloids.

"That indicates that plant-microbe symbioses have complex ecological effects," said Clay, professor of biology and director of the Indiana University Research and Teaching Preserve. "It signals the need for more investigations of the long-term effects of cooperative symbiosis."

Indiana University undergraduate Susan Fischer also co-authored the study. The research was sponsored by the National Science Foundation and the Indiana University Research and Teaching Preserve.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Cite This Page:

Rice University. "Grass, fungus combination affects ecology." ScienceDaily. ScienceDaily, 20 March 2010. <www.sciencedaily.com/releases/2010/03/100315162203.htm>.
Rice University. (2010, March 20). Grass, fungus combination affects ecology. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2010/03/100315162203.htm
Rice University. "Grass, fungus combination affects ecology." ScienceDaily. www.sciencedaily.com/releases/2010/03/100315162203.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins