Featured Research

from universities, journals, and other organizations

Molecular brake for the bacterial flagellar nano-motor

Date:
March 31, 2010
Source:
University of Biozentrum Basel
Summary:
Researchers have now discovered that Escherichia coli bacteria harness a sophisticated chemosensory and signal transduction machinery that allows them to accurately control motor rotation, thereby adjusting their swimming velocity in response to changing environments. The research may foster the development of novel strategies to fight persistent infections.

Trajectories of swimming E.Coli bacteria.
Credit: Image courtesy of University of Biozentrum Basel

Biozentrum researchers have now discovered that Escherichia coli bacteria harness a sophisticated chemosensory and signal transduction machinery that allows them to accurately control motor rotation, thereby adjusting their swimming velocity in response to changing environments. The research results that were published online in Cell on March 18, 2010, may foster the development of novel strategies to fight persistent infections.

Bacteria can swim through liquids at speeds up to 30 times their body length per second. It has been known for a long time that different bacterial species swim at different speeds, but it was not known if this is a species specific trait and if bacteria can actively adjust their velocity.

The research team from Switzerland and Germany, led by Alex Böhm and Urs Jenal from the Biozentrum has now discovered that E. coli, and probably many other bacteria can actively regulate their swimming velocity.

This behaviour is governed by a molecular motor-brake protein that upon binding of the bacterial second messenger cyclic dimeric GMP interacts with a specific subunit of the flagellar nano-motor and thereby curbs motor output. The intracellular concentration of cyclic dimeric GMP is controlled by a network of signaling proteins. When bacteria are faced with nutrient depletion this network is actived, produces more cyclic dimeric GMP and triggers motor-brake engagement. Because slow swimming enhances the probability of a bacterial cell to permanently attach to surfaces, this behaviour might prime bacteria to switch into a sessile life style.

olonization of epithelial surfaces in the human host can lead to the formation of antibiotic tolerant and immune system resistent 'biofilms' that are the basis of many chronic bacterial infections. Thus, understanding the molecular basis of surface colonization and biofilm formation may foster the development of novel strategies to fight persistent infections. In addition, the discovery of flagellar motor curbing could be exploited for biotechnological applications, for example to engineer nanopumps in microfluidics or to build cell-based microrobots.


Story Source:

The above story is based on materials provided by University of Biozentrum Basel. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alex Boehm, Matthias Kaiser, Hui Li, Christian Spangler, Christoph Alexander Kasper, Martin Ackermann, Volkhard Kaever, Victor Sourjik, Volker Roth, and Urs Jenal. Second Messenger-Mediated Adjustment of Bacterial Swimming Velocity. Cell, 2010 DOI: 10.1016/j.cell.2010.01.018

Cite This Page:

University of Biozentrum Basel. "Molecular brake for the bacterial flagellar nano-motor." ScienceDaily. ScienceDaily, 31 March 2010. <www.sciencedaily.com/releases/2010/03/100319210442.htm>.
University of Biozentrum Basel. (2010, March 31). Molecular brake for the bacterial flagellar nano-motor. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2010/03/100319210442.htm
University of Biozentrum Basel. "Molecular brake for the bacterial flagellar nano-motor." ScienceDaily. www.sciencedaily.com/releases/2010/03/100319210442.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) — A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) — A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) — A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
The New York Times Backs Pot Legalization

The New York Times Backs Pot Legalization

Newsy (July 27, 2014) — The New York Times has officially endorsed the legalization of marijuana, but why now, and to what end? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins