Featured Research

from universities, journals, and other organizations

Molecular brake for the bacterial flagellar nano-motor

Date:
March 31, 2010
Source:
University of Biozentrum Basel
Summary:
Researchers have now discovered that Escherichia coli bacteria harness a sophisticated chemosensory and signal transduction machinery that allows them to accurately control motor rotation, thereby adjusting their swimming velocity in response to changing environments. The research may foster the development of novel strategies to fight persistent infections.

Trajectories of swimming E.Coli bacteria.
Credit: Image courtesy of University of Biozentrum Basel

Biozentrum researchers have now discovered that Escherichia coli bacteria harness a sophisticated chemosensory and signal transduction machinery that allows them to accurately control motor rotation, thereby adjusting their swimming velocity in response to changing environments. The research results that were published online in Cell on March 18, 2010, may foster the development of novel strategies to fight persistent infections.

Bacteria can swim through liquids at speeds up to 30 times their body length per second. It has been known for a long time that different bacterial species swim at different speeds, but it was not known if this is a species specific trait and if bacteria can actively adjust their velocity.

The research team from Switzerland and Germany, led by Alex Böhm and Urs Jenal from the Biozentrum has now discovered that E. coli, and probably many other bacteria can actively regulate their swimming velocity.

This behaviour is governed by a molecular motor-brake protein that upon binding of the bacterial second messenger cyclic dimeric GMP interacts with a specific subunit of the flagellar nano-motor and thereby curbs motor output. The intracellular concentration of cyclic dimeric GMP is controlled by a network of signaling proteins. When bacteria are faced with nutrient depletion this network is actived, produces more cyclic dimeric GMP and triggers motor-brake engagement. Because slow swimming enhances the probability of a bacterial cell to permanently attach to surfaces, this behaviour might prime bacteria to switch into a sessile life style.

olonization of epithelial surfaces in the human host can lead to the formation of antibiotic tolerant and immune system resistent 'biofilms' that are the basis of many chronic bacterial infections. Thus, understanding the molecular basis of surface colonization and biofilm formation may foster the development of novel strategies to fight persistent infections. In addition, the discovery of flagellar motor curbing could be exploited for biotechnological applications, for example to engineer nanopumps in microfluidics or to build cell-based microrobots.


Story Source:

The above story is based on materials provided by University of Biozentrum Basel. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alex Boehm, Matthias Kaiser, Hui Li, Christian Spangler, Christoph Alexander Kasper, Martin Ackermann, Volkhard Kaever, Victor Sourjik, Volker Roth, and Urs Jenal. Second Messenger-Mediated Adjustment of Bacterial Swimming Velocity. Cell, 2010 DOI: 10.1016/j.cell.2010.01.018

Cite This Page:

University of Biozentrum Basel. "Molecular brake for the bacterial flagellar nano-motor." ScienceDaily. ScienceDaily, 31 March 2010. <www.sciencedaily.com/releases/2010/03/100319210442.htm>.
University of Biozentrum Basel. (2010, March 31). Molecular brake for the bacterial flagellar nano-motor. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2010/03/100319210442.htm
University of Biozentrum Basel. "Molecular brake for the bacterial flagellar nano-motor." ScienceDaily. www.sciencedaily.com/releases/2010/03/100319210442.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) — Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) — An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) — The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) — A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins