Featured Research

from universities, journals, and other organizations

Molecular brake for the bacterial flagellar nano-motor

Date:
March 31, 2010
Source:
University of Biozentrum Basel
Summary:
Researchers have now discovered that Escherichia coli bacteria harness a sophisticated chemosensory and signal transduction machinery that allows them to accurately control motor rotation, thereby adjusting their swimming velocity in response to changing environments. The research may foster the development of novel strategies to fight persistent infections.

Trajectories of swimming E.Coli bacteria.
Credit: Image courtesy of University of Biozentrum Basel

Biozentrum researchers have now discovered that Escherichia coli bacteria harness a sophisticated chemosensory and signal transduction machinery that allows them to accurately control motor rotation, thereby adjusting their swimming velocity in response to changing environments. The research results that were published online in Cell on March 18, 2010, may foster the development of novel strategies to fight persistent infections.

Related Articles


Bacteria can swim through liquids at speeds up to 30 times their body length per second. It has been known for a long time that different bacterial species swim at different speeds, but it was not known if this is a species specific trait and if bacteria can actively adjust their velocity.

The research team from Switzerland and Germany, led by Alex Bφhm and Urs Jenal from the Biozentrum has now discovered that E. coli, and probably many other bacteria can actively regulate their swimming velocity.

This behaviour is governed by a molecular motor-brake protein that upon binding of the bacterial second messenger cyclic dimeric GMP interacts with a specific subunit of the flagellar nano-motor and thereby curbs motor output. The intracellular concentration of cyclic dimeric GMP is controlled by a network of signaling proteins. When bacteria are faced with nutrient depletion this network is actived, produces more cyclic dimeric GMP and triggers motor-brake engagement. Because slow swimming enhances the probability of a bacterial cell to permanently attach to surfaces, this behaviour might prime bacteria to switch into a sessile life style.

olonization of epithelial surfaces in the human host can lead to the formation of antibiotic tolerant and immune system resistent 'biofilms' that are the basis of many chronic bacterial infections. Thus, understanding the molecular basis of surface colonization and biofilm formation may foster the development of novel strategies to fight persistent infections. In addition, the discovery of flagellar motor curbing could be exploited for biotechnological applications, for example to engineer nanopumps in microfluidics or to build cell-based microrobots.


Story Source:

The above story is based on materials provided by University of Biozentrum Basel. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alex Boehm, Matthias Kaiser, Hui Li, Christian Spangler, Christoph Alexander Kasper, Martin Ackermann, Volkhard Kaever, Victor Sourjik, Volker Roth, and Urs Jenal. Second Messenger-Mediated Adjustment of Bacterial Swimming Velocity. Cell, 2010 DOI: 10.1016/j.cell.2010.01.018

Cite This Page:

University of Biozentrum Basel. "Molecular brake for the bacterial flagellar nano-motor." ScienceDaily. ScienceDaily, 31 March 2010. <www.sciencedaily.com/releases/2010/03/100319210442.htm>.
University of Biozentrum Basel. (2010, March 31). Molecular brake for the bacterial flagellar nano-motor. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2010/03/100319210442.htm
University of Biozentrum Basel. "Molecular brake for the bacterial flagellar nano-motor." ScienceDaily. www.sciencedaily.com/releases/2010/03/100319210442.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bionic Ants Could Be Tomorrow's Factory Workers

Bionic Ants Could Be Tomorrow's Factory Workers

Reuters - Innovations Video Online (Mar. 30, 2015) — Industrious 3D printed bionic ants working together could toil in the factories of the future, says German technology company Festo. The robotic insects cooperate and coordinate their actions and movements to achieve a common aim. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com
Captive-Born Panda Triplets Are Eight Months Old

Captive-Born Panda Triplets Are Eight Months Old

Reuters - Light News Video Online (Mar. 30, 2015) — The world&apos;s only surviving captivity-born panda triplets turn eight months old, according to China’s state media. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Lions Make Surprise Comeback in Gabon

Lions Make Surprise Comeback in Gabon

AFP (Mar. 30, 2015) — Lions have made a comeback in southeast Gabon, after disappearing for years, according to live footage from US wildlife organisation Panthera. Duration: 00:32 Video provided by AFP
Powered by NewsLook.com
Ancient Egyptian Beer Making Vessels Discovered in Israel

Ancient Egyptian Beer Making Vessels Discovered in Israel

AFP (Mar. 30, 2015) — Fragments of pottery used by Egyptians to make beer and dating back 5,000 years have been discovered on a building site in Tel Aviv, the Israeli Antiquities Authority said on Sunday. Duration: 00:51 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins