Featured Research

from universities, journals, and other organizations

Computer model predicts shifts in carbon absorption by forest canopies

Date:
April 1, 2010
Source:
USDA/Agricultural Research Service
Summary:
An agricultural scientist participated in a project to fine-tune computer models that can indicate when forest "carbon sinks" become net carbon generators instead.

An ARS scientist recently helped refine computer models that can indicate when forest "carbon sinks" become net carbon generators instead, such as when gypsy moths defoliate the canopy.
Credit: Photo courtesy of NRCS

An Agricultural Research Service (ARS) scientist participated in a project to fine-tune computer models that can indicate when forest "carbon sinks" become net carbon generators instead. The results will help pinpoint the effectiveness of trees in offsetting carbon releases that contribute to higher atmospheric temperatures and global climate change.

ARS plant physiologist Erik Hamerlynck teamed up with Rutgers University biologist Karina Schafer and U.S. Forest Service colleagues Kenneth Clark and Nicholas Skowronski to calibrate the Canopy Conductance Constrained Carbon Assimilation (4C-A) model, a computer program that generates carbon balance estimates for tree canopies. Hamerlynck works at the ARS Southwest Watershed Research Center in Tucson, Ariz.

In the summer of 2006, the team measured tree sap flow and leaf-level photosynthetic gas exchange at different canopy levels in a stand of oaks and pines in the New Jersey Pine Barrens. These data were used to calibrate the 4C-A model to simulate the amount of carbon the tree canopy absorbs and releases into the atmosphere via photosynthesis and respiration.

Results from the calibrated model -- which were within 15 percent of estimates from three other techniques -- indicated that the average seasonal carbon absorption of the stand was around 1,240 grams of carbon per square meter of canopy area. The scientists then used the 4C-A model to estimate seasonal carbon exchange rates for 2007, when the same stand of trees was completely defoliated for 2 to 3 weeks during an infestation of gypsy moths. This infestation occurred when the stand was at its seasonal peak for carbon uptake.

The model showed that after the gypsy moths had finished foraging, the average carbon absorption rates for the growing season dropped 25 percent to around 940 grams of carbon per square meter of canopy area. This decline meant that the stand was no longer a net carbon "sink" -- it ended up adding more carbon back to the atmosphere than it had absorbed.

According to the U.S. Forest Service, U.S. forests absorb and store about 750 million metric tons of carbon dioxide each year. Managing forest resources to optimize carbon sequestration is essential in mitigating the effects of climate change.

Results from this work were published in Global Change Biology.


Story Source:

The above story is based on materials provided by USDA/Agricultural Research Service. Note: Materials may be edited for content and length.


Journal Reference:

  1. Karina V. R. Schδfer, Kenneth L. Clark, Nicholas Skowronski, Erik P. Hamerlynck. Impact of insect defoliation on forest carbon balance as assessed with a canopy assimilation model. Global Change Biology, 2010; 16 (2): 546 DOI: 10.1111/j.1365-2486.2009.02037.x

Cite This Page:

USDA/Agricultural Research Service. "Computer model predicts shifts in carbon absorption by forest canopies." ScienceDaily. ScienceDaily, 1 April 2010. <www.sciencedaily.com/releases/2010/03/100331104923.htm>.
USDA/Agricultural Research Service. (2010, April 1). Computer model predicts shifts in carbon absorption by forest canopies. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2010/03/100331104923.htm
USDA/Agricultural Research Service. "Computer model predicts shifts in carbon absorption by forest canopies." ScienceDaily. www.sciencedaily.com/releases/2010/03/100331104923.htm (accessed July 29, 2014).

Share This




More Earth & Climate News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) — The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) — AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) — A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) — A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins