Featured Research

from universities, journals, and other organizations

Computer model predicts shifts in carbon absorption by forest canopies

Date:
April 1, 2010
Source:
USDA/Agricultural Research Service
Summary:
An agricultural scientist participated in a project to fine-tune computer models that can indicate when forest "carbon sinks" become net carbon generators instead.

An ARS scientist recently helped refine computer models that can indicate when forest "carbon sinks" become net carbon generators instead, such as when gypsy moths defoliate the canopy.
Credit: Photo courtesy of NRCS

An Agricultural Research Service (ARS) scientist participated in a project to fine-tune computer models that can indicate when forest "carbon sinks" become net carbon generators instead. The results will help pinpoint the effectiveness of trees in offsetting carbon releases that contribute to higher atmospheric temperatures and global climate change.

Related Articles


ARS plant physiologist Erik Hamerlynck teamed up with Rutgers University biologist Karina Schafer and U.S. Forest Service colleagues Kenneth Clark and Nicholas Skowronski to calibrate the Canopy Conductance Constrained Carbon Assimilation (4C-A) model, a computer program that generates carbon balance estimates for tree canopies. Hamerlynck works at the ARS Southwest Watershed Research Center in Tucson, Ariz.

In the summer of 2006, the team measured tree sap flow and leaf-level photosynthetic gas exchange at different canopy levels in a stand of oaks and pines in the New Jersey Pine Barrens. These data were used to calibrate the 4C-A model to simulate the amount of carbon the tree canopy absorbs and releases into the atmosphere via photosynthesis and respiration.

Results from the calibrated model -- which were within 15 percent of estimates from three other techniques -- indicated that the average seasonal carbon absorption of the stand was around 1,240 grams of carbon per square meter of canopy area. The scientists then used the 4C-A model to estimate seasonal carbon exchange rates for 2007, when the same stand of trees was completely defoliated for 2 to 3 weeks during an infestation of gypsy moths. This infestation occurred when the stand was at its seasonal peak for carbon uptake.

The model showed that after the gypsy moths had finished foraging, the average carbon absorption rates for the growing season dropped 25 percent to around 940 grams of carbon per square meter of canopy area. This decline meant that the stand was no longer a net carbon "sink" -- it ended up adding more carbon back to the atmosphere than it had absorbed.

According to the U.S. Forest Service, U.S. forests absorb and store about 750 million metric tons of carbon dioxide each year. Managing forest resources to optimize carbon sequestration is essential in mitigating the effects of climate change.

Results from this work were published in Global Change Biology.


Story Source:

The above story is based on materials provided by USDA/Agricultural Research Service. Note: Materials may be edited for content and length.


Journal Reference:

  1. Karina V. R. Schδfer, Kenneth L. Clark, Nicholas Skowronski, Erik P. Hamerlynck. Impact of insect defoliation on forest carbon balance as assessed with a canopy assimilation model. Global Change Biology, 2010; 16 (2): 546 DOI: 10.1111/j.1365-2486.2009.02037.x

Cite This Page:

USDA/Agricultural Research Service. "Computer model predicts shifts in carbon absorption by forest canopies." ScienceDaily. ScienceDaily, 1 April 2010. <www.sciencedaily.com/releases/2010/03/100331104923.htm>.
USDA/Agricultural Research Service. (2010, April 1). Computer model predicts shifts in carbon absorption by forest canopies. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2010/03/100331104923.htm
USDA/Agricultural Research Service. "Computer model predicts shifts in carbon absorption by forest canopies." ScienceDaily. www.sciencedaily.com/releases/2010/03/100331104923.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) — Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) — A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) — The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins