Featured Research

from universities, journals, and other organizations

Computer model predicts shifts in carbon absorption by forest canopies

Date:
April 1, 2010
Source:
USDA/Agricultural Research Service
Summary:
An agricultural scientist participated in a project to fine-tune computer models that can indicate when forest "carbon sinks" become net carbon generators instead.

An ARS scientist recently helped refine computer models that can indicate when forest "carbon sinks" become net carbon generators instead, such as when gypsy moths defoliate the canopy.
Credit: Photo courtesy of NRCS

An Agricultural Research Service (ARS) scientist participated in a project to fine-tune computer models that can indicate when forest "carbon sinks" become net carbon generators instead. The results will help pinpoint the effectiveness of trees in offsetting carbon releases that contribute to higher atmospheric temperatures and global climate change.

ARS plant physiologist Erik Hamerlynck teamed up with Rutgers University biologist Karina Schafer and U.S. Forest Service colleagues Kenneth Clark and Nicholas Skowronski to calibrate the Canopy Conductance Constrained Carbon Assimilation (4C-A) model, a computer program that generates carbon balance estimates for tree canopies. Hamerlynck works at the ARS Southwest Watershed Research Center in Tucson, Ariz.

In the summer of 2006, the team measured tree sap flow and leaf-level photosynthetic gas exchange at different canopy levels in a stand of oaks and pines in the New Jersey Pine Barrens. These data were used to calibrate the 4C-A model to simulate the amount of carbon the tree canopy absorbs and releases into the atmosphere via photosynthesis and respiration.

Results from the calibrated model -- which were within 15 percent of estimates from three other techniques -- indicated that the average seasonal carbon absorption of the stand was around 1,240 grams of carbon per square meter of canopy area. The scientists then used the 4C-A model to estimate seasonal carbon exchange rates for 2007, when the same stand of trees was completely defoliated for 2 to 3 weeks during an infestation of gypsy moths. This infestation occurred when the stand was at its seasonal peak for carbon uptake.

The model showed that after the gypsy moths had finished foraging, the average carbon absorption rates for the growing season dropped 25 percent to around 940 grams of carbon per square meter of canopy area. This decline meant that the stand was no longer a net carbon "sink" -- it ended up adding more carbon back to the atmosphere than it had absorbed.

According to the U.S. Forest Service, U.S. forests absorb and store about 750 million metric tons of carbon dioxide each year. Managing forest resources to optimize carbon sequestration is essential in mitigating the effects of climate change.

Results from this work were published in Global Change Biology.


Story Source:

The above story is based on materials provided by USDA/Agricultural Research Service. Note: Materials may be edited for content and length.


Journal Reference:

  1. Karina V. R. Schδfer, Kenneth L. Clark, Nicholas Skowronski, Erik P. Hamerlynck. Impact of insect defoliation on forest carbon balance as assessed with a canopy assimilation model. Global Change Biology, 2010; 16 (2): 546 DOI: 10.1111/j.1365-2486.2009.02037.x

Cite This Page:

USDA/Agricultural Research Service. "Computer model predicts shifts in carbon absorption by forest canopies." ScienceDaily. ScienceDaily, 1 April 2010. <www.sciencedaily.com/releases/2010/03/100331104923.htm>.
USDA/Agricultural Research Service. (2010, April 1). Computer model predicts shifts in carbon absorption by forest canopies. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2010/03/100331104923.htm
USDA/Agricultural Research Service. "Computer model predicts shifts in carbon absorption by forest canopies." ScienceDaily. www.sciencedaily.com/releases/2010/03/100331104923.htm (accessed October 22, 2014).

Share This



More Earth & Climate News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) — He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
How Detroit's Money Woes Led To U.N.-Condemned Water Cutoffs

How Detroit's Money Woes Led To U.N.-Condemned Water Cutoffs

Newsy (Oct. 20, 2014) — The United Nations says water is a human right, but should it be free? Detroit has cut off water to residents who can't pay, and the U.N. isn't happy. Video provided by Newsy
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
White Rhino's Death In Kenya Means Just 6 Are Left

White Rhino's Death In Kenya Means Just 6 Are Left

Newsy (Oct. 20, 2014) — Suni, a rare northern white rhino at Ol Pejeta Conservancy, died Friday. This, as many media have pointed out, leaves people fearing extinction. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins