Featured Research

from universities, journals, and other organizations

Measuring global water vapor and formaldehyde

Date:
April 14, 2010
Source:
European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)
Summary:
Atmospheric water vapor is the most important natural greenhouse gas, accounting for about two-thirds of the natural greenhouse effect. Despite this importance, its role in climate and its reaction to climate change are still difficult to assess. Many details of the hydrological cycle are poorly understood, such as the process of cloud formation and the transport and release of latent heat contained in the water vapor. In contrast to other important greenhouse gases like carbon dioxide and methane, water vapor has a much higher temporal and spatial variability.

H2O total column distribution in March 2010 as measured by GOME-2/Metop-A. The global water vapour patterns over land and ocean are clearly visible with moist Intertropical Convergence Zone near the equatorial regions and dry polar regions.
Credit: EUMETSAT

Atmospheric water vapour (H2O) is the most important natural greenhouse gas, accounting for about two-thirds of the natural greenhouse effect. Despite this importance, its role in climate and its reaction to climate change are still difficult to assess.

Many details of the hydrological cycle are poorly understood, such as the process of cloud formation and the transport and release of latent heat contained in the water vapour. In contrast to other important greenhouse gases like carbon dioxide (CO2) and methane, water vapour has a much higher temporal and spatial variability.

Global monitoring of H2O by Metop-A -- Europe’s first polar-orbiting meteorological satellite -- is therefore a key to understanding its impact on climate.

Formaldehyde (HCHO) is one of the most abundant hydrocarbons in the atmosphere and is an important indicator of so-called non-methane volatile organic compound (NMVOC) emissions and photochemical activity. As such, it is an indicator of the presence of volatile organic compounds in the atmosphere, which in turn play an important role in the formation of toxic ozone close to the surface and also have an important influence on climate through the formation of large aerosol particles. HCHO is a primary emission product from biomass burning and fossil fuel combustion, but its principle source in the atmosphere is the photochemical oxidation of methane and non-methane hydrocarbons. Metop-A measurements of HCHO can be used to constrain NMVOC emissions in current state-of-the-art chemical transport models used in the forecasting and analysis of pollution events and also in modelling climate change.

Operational GOME-2 H2O and HCHO data are being produced by the Deutsches Zentrum für Luft- und Raumfahrt (DLR), the German Aerospace Center, a partner of EUMETSAT's Ozone and Atmospheric Chemistry Monitoring SAF (O3M-SAF) coordinated by the Finnish Meteorological Institute. The H2O and HCHO retrieval algorithms for GOME-2 have been developed by the Max Planck Institute for Chemistry in Mainz, Germany, and the Belgian Institute for Space Aeronomy (BIRA/IASB) in Brussels, respectively.

GOME-2 H2O and HCHO as well as other operational products can be ordered via the O3M-SAF site. DLR provides near-real-time and historical maps of GOME-2 total column (ozone, nitrogen dioxide, tropospheric nitrogen dioxide, bromine oxide, sulphur dioxide, H2O, HCHO) and cloud products.


Story Source:

The above story is based on materials provided by European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). Note: Materials may be edited for content and length.


Cite This Page:

European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). "Measuring global water vapor and formaldehyde." ScienceDaily. ScienceDaily, 14 April 2010. <www.sciencedaily.com/releases/2010/04/100409134731.htm>.
European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). (2010, April 14). Measuring global water vapor and formaldehyde. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2010/04/100409134731.htm
European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). "Measuring global water vapor and formaldehyde." ScienceDaily. www.sciencedaily.com/releases/2010/04/100409134731.htm (accessed July 25, 2014).

Share This




More Earth & Climate News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) — The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Bill Gates: Health, Agriculture Key to Africa's Development

Bill Gates: Health, Agriculture Key to Africa's Development

AFP (July 24, 2014) — Health and agriculture development are key if African countries are to overcome poverty and grow, US software billionaire Bill Gates said Thursday, as he received an honourary degree in Ethiopia. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Higgins Breaks Record at Mt. Washington

Higgins Breaks Record at Mt. Washington

Driving Sports (July 24, 2014) — Subaru Rally Team USA drivers David Higgins and Travis Pastrana face off against a global contingent of racers at the annual Mt. Washington Hillclimb in New Hampshire. Includes exclusive in-car footage from Higgins' record attempt. Video provided by Driving Sports
Powered by NewsLook.com
Storm Kills Three, Injures 20 at Virginia Campground

Storm Kills Three, Injures 20 at Virginia Campground

Reuters - US Online Video (July 24, 2014) — A likely tornado tears through an eastern Virginia campground, killing three and injuring at least 20. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins