Featured Research

from universities, journals, and other organizations

Measuring global water vapor and formaldehyde

Date:
April 14, 2010
Source:
European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)
Summary:
Atmospheric water vapor is the most important natural greenhouse gas, accounting for about two-thirds of the natural greenhouse effect. Despite this importance, its role in climate and its reaction to climate change are still difficult to assess. Many details of the hydrological cycle are poorly understood, such as the process of cloud formation and the transport and release of latent heat contained in the water vapor. In contrast to other important greenhouse gases like carbon dioxide and methane, water vapor has a much higher temporal and spatial variability.

H2O total column distribution in March 2010 as measured by GOME-2/Metop-A. The global water vapour patterns over land and ocean are clearly visible with moist Intertropical Convergence Zone near the equatorial regions and dry polar regions.
Credit: EUMETSAT

Atmospheric water vapour (H2O) is the most important natural greenhouse gas, accounting for about two-thirds of the natural greenhouse effect. Despite this importance, its role in climate and its reaction to climate change are still difficult to assess.

Related Articles


Many details of the hydrological cycle are poorly understood, such as the process of cloud formation and the transport and release of latent heat contained in the water vapour. In contrast to other important greenhouse gases like carbon dioxide (CO2) and methane, water vapour has a much higher temporal and spatial variability.

Global monitoring of H2O by Metop-A -- Europe’s first polar-orbiting meteorological satellite -- is therefore a key to understanding its impact on climate.

Formaldehyde (HCHO) is one of the most abundant hydrocarbons in the atmosphere and is an important indicator of so-called non-methane volatile organic compound (NMVOC) emissions and photochemical activity. As such, it is an indicator of the presence of volatile organic compounds in the atmosphere, which in turn play an important role in the formation of toxic ozone close to the surface and also have an important influence on climate through the formation of large aerosol particles. HCHO is a primary emission product from biomass burning and fossil fuel combustion, but its principle source in the atmosphere is the photochemical oxidation of methane and non-methane hydrocarbons. Metop-A measurements of HCHO can be used to constrain NMVOC emissions in current state-of-the-art chemical transport models used in the forecasting and analysis of pollution events and also in modelling climate change.

Operational GOME-2 H2O and HCHO data are being produced by the Deutsches Zentrum für Luft- und Raumfahrt (DLR), the German Aerospace Center, a partner of EUMETSAT's Ozone and Atmospheric Chemistry Monitoring SAF (O3M-SAF) coordinated by the Finnish Meteorological Institute. The H2O and HCHO retrieval algorithms for GOME-2 have been developed by the Max Planck Institute for Chemistry in Mainz, Germany, and the Belgian Institute for Space Aeronomy (BIRA/IASB) in Brussels, respectively.

GOME-2 H2O and HCHO as well as other operational products can be ordered via the O3M-SAF site. DLR provides near-real-time and historical maps of GOME-2 total column (ozone, nitrogen dioxide, tropospheric nitrogen dioxide, bromine oxide, sulphur dioxide, H2O, HCHO) and cloud products.


Story Source:

The above story is based on materials provided by European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). Note: Materials may be edited for content and length.


Cite This Page:

European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). "Measuring global water vapor and formaldehyde." ScienceDaily. ScienceDaily, 14 April 2010. <www.sciencedaily.com/releases/2010/04/100409134731.htm>.
European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). (2010, April 14). Measuring global water vapor and formaldehyde. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2010/04/100409134731.htm
European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). "Measuring global water vapor and formaldehyde." ScienceDaily. www.sciencedaily.com/releases/2010/04/100409134731.htm (accessed October 24, 2014).

Share This



More Earth & Climate News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) — EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) — Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) — A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) — Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins