Featured Research

from universities, journals, and other organizations

Scientists put proteins right where they want them

Date:
April 19, 2010
Source:
Johns Hopkins Medical Institutions
Summary:
Using a method they developed to watch moment to moment as they move a molecule to precise sites inside live human cells, scientists are closer to understanding why and how a protein at one location may signal division and growth, and the same protein at another location, death.

Using a method they developed to watch moment to moment as they move a molecule to precise sites inside live human cells, Johns Hopkins scientists are closer to understanding why and how a protein at one location may signal division and growth, and the same protein at another location, death.

Related Articles


Their research, published Feb. 14 in Nature Methods, expands on a more limited method using a chemical tool to move proteins inside of cells to the periphery, a locale known as the plasma membrane.

"Where a particular protein is activated and the timing of that activation influence how a cell responds to outside stimulus," says Takanari Inoue, Ph.D., an assistant professor of cell biology at Johns Hopkins University School of Medicine. "Our goal with this newly expanded tool is to manipulate protein activities in many places in cells on a rapid timescale."

Cells cleverly have resolved the predicament of needing to respond to a near infinite array of external stimuli -- temperature, for instance -- even though they employ only a limited number of molecular players. The notion is that a single protein assumes multiple roles by changing its location or altering the speed and duration of activation.

Chemical signaling inside cells connects protein molecules through complex feedback loops and crosstalk, Inoue says, so knowing exactly how each protein contributes to which signals at what locations requires the ability to rapidly move proteins of interest to specific organelles found in cells. These include mitochondria (the power generators of cells) and Golgi bodies (the delivery systems of cells).

The Hopkins team chose the signaling protein Ras as the molecule it would attempt to send packing throughout a cell's interior. A regulator of cell growth that's often implicated in cancer, Ras has been long studied and it's known to be a molecular switch. However, no one has had the ability to discern what Ras does at different locations such as Golgi bodies and mitrochondria, much less what happens when Ras is activated simultaneously at any combination of these and other organelles.

Working with live human HeLa cells and Ras under a microscope, the team used a dimerization probe consisting of a special small molecule that simultaneously attracts two proteins that wouldn't normally have an affinity for each other and binds them together. In this system, one of the partner proteins is anchored to an organelle and the other is free floating inside the cell. Adding a chemical dimerizer induces the free protein to join the tethered one.

Using scissor-like enzymes, the team sliced and diced the DNA of the paired proteins to change the molecular address of its destination. They cut out the "mailing address" -- known as a targeting sequence -- that formerly delivered the protein unit to the plasma membrane and replaced it with new addresses (targeting sequences) that shipped it instead to specific organelles.

"We were able to manipulate protein activities in situ and very rapidly on each individual organelle," Inoue said. "Ultimately, this will help us to better understand protein function at these critical cellular components."

This study was funded by the National Institutes of Health.

In addition to Inoue, authors of this paper are Toru Komatsu, Igor Kukelyansky, J. Michael McCaffery, Tasuku Ueno and Lidenys C. Varela, all of Johns Hopkins.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Journal Reference:

  1. Komatsu et al. Organelle-specific, rapid induction of molecular activities and membrane tethering. Nature Methods, 2010; 7 (3): 206 DOI: 10.1038/nmeth.1428

Cite This Page:

Johns Hopkins Medical Institutions. "Scientists put proteins right where they want them." ScienceDaily. ScienceDaily, 19 April 2010. <www.sciencedaily.com/releases/2010/04/100414161555.htm>.
Johns Hopkins Medical Institutions. (2010, April 19). Scientists put proteins right where they want them. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2010/04/100414161555.htm
Johns Hopkins Medical Institutions. "Scientists put proteins right where they want them." ScienceDaily. www.sciencedaily.com/releases/2010/04/100414161555.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bionic Ants Could Be Tomorrow's Factory Workers

Bionic Ants Could Be Tomorrow's Factory Workers

Reuters - Innovations Video Online (Mar. 30, 2015) — Industrious 3D printed bionic ants working together could toil in the factories of the future, says German technology company Festo. The robotic insects cooperate and coordinate their actions and movements to achieve a common aim. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com
Captive-Born Panda Triplets Are Eight Months Old

Captive-Born Panda Triplets Are Eight Months Old

Reuters - Light News Video Online (Mar. 30, 2015) — The world&apos;s only surviving captivity-born panda triplets turn eight months old, according to China’s state media. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Lions Make Surprise Comeback in Gabon

Lions Make Surprise Comeback in Gabon

AFP (Mar. 30, 2015) — Lions have made a comeback in southeast Gabon, after disappearing for years, according to live footage from US wildlife organisation Panthera. Duration: 00:32 Video provided by AFP
Powered by NewsLook.com
Ancient Egyptian Beer Making Vessels Discovered in Israel

Ancient Egyptian Beer Making Vessels Discovered in Israel

AFP (Mar. 30, 2015) — Fragments of pottery used by Egyptians to make beer and dating back 5,000 years have been discovered on a building site in Tel Aviv, the Israeli Antiquities Authority said on Sunday. Duration: 00:51 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins