Featured Research

from universities, journals, and other organizations

Cell division orchestrated by multiple oscillating proteins

Date:
April 28, 2010
Source:
Rockefeller University
Summary:
Cell division is a crucial but dangerous business. It unfolds in a cycle of many steps, including DNA replication, spindle formation, mitosis and others, and they must happen in the right order to prevent abnormal cell death and cancer formation. New research examines the activity of two proteins at the heart of the cell-cycle control system and finds that the cycle has not just one, but several independent processes that help to maintain order. The work suggests that autonomous oscillating proteins may coordinate the events of the cell cycle through a phenomena called "phase-locking," similar to how our circadian rhythm syncs to the light-dark cycle of our environment.

Cellular synchrony. Scientists blocked yeast cells from dividing to observe the behavior of key proteins that control cell-cycle events. Above, Cdc14 (green) oscillates, separating from the nucleolus (red), and sometimes overlapping with it (yellow).
Credit: Image courtesy of Rockefeller University

Cell division is a crucial but dangerous business. It unfolds in a cycle of many steps, including DNA replication, spindle formation, mitosis and others, and they must happen in the right order to prevent abnormal cell death and cancer formation. New research from Rockefeller University examines the activity of two proteins at the heart of the cell-cycle control system and finds that the cycle has not just one, but several independent processes that help to maintain order. The work suggests that autonomous oscillating proteins may coordinate the events of the cell cycle through a phenomena called "phase-locking," similar to how our circadian rhythm syncs to the light-dark cycle of our environment.

"Our research suggests that the modern eukaryotic cell-cycle may start from multiple oscillatory modules," says Ying Lu, a former graduate fellow in Frederick R. Cross's Laboratory of Yeast Molecular Genetics, who led the research. "That modularity may provide a functional robustness to cell division."

At the center of the cell-cycle control system is a protein called cyclin-dependent-kinase (Cdk); Cdk's independent oscillating activity can establish the pace and order of cell cycle events. The researchers, led by Lu, reasoned that if Cdk oscillation was the only cycle-setting pacemaker in the cell, blocking it would cause the cell cycle to stall. In experiments published recently in Cell, they tested the hypothesis by watching what happens to another important protein in the cell cycle known as Cdc14, which normally moves away from the nucleolus, activates and begins antagonizing Cdk as the cell exits mitosis. Using quantitative time-lapse microscopy, the researchers were able to capture the transient Cdc14 movement and activation process. They then blocked Cdk oscillation and overt cell-cycle progression, and surprisingly found that the periodic Cdc14 activation/inactivation continued just as it would in a normally dividing cell. They also discovered a negative feedback pathway underlying this Cdc14 oscillator, a finding which indicates that the cell cycle may be composed of multiple autonomous pacemakers.

The existence of these pacemakers raises another question, says Lu, who is now a postdoc in Marc Kirschner's lab at Harvard University. How do oscillators with different intrinsic frequencies coordinate with each other to form a coherent cell cycle progression? The experiments suggest that, although Cdc14 activity oscillated at constant Cdk levels, its frequency was controlled by several different Cdk activities, which indicates that autonomous cell-cycle oscillators may coordinate each other through a phenomena called phase-locking. Such a system, which is analogous to day-night cycles entraining our circadian clocks, would help explain the evolution of the cell cycle, and to ensure its accuracy and reliability.

"We think multiple oscillators, as they exist independently in the cell cycle, could achieve coherence through interactions affecting their frequencies," Lu says.


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lu et al. Periodic Cyclin-Cdk Activity Entrains an Autonomous Cdc14 Release Oscillator. Cell, 2010; 141 (2): 268 DOI: 10.1016/j.cell.2010.03.021

Cite This Page:

Rockefeller University. "Cell division orchestrated by multiple oscillating proteins." ScienceDaily. ScienceDaily, 28 April 2010. <www.sciencedaily.com/releases/2010/04/100427115203.htm>.
Rockefeller University. (2010, April 28). Cell division orchestrated by multiple oscillating proteins. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2010/04/100427115203.htm
Rockefeller University. "Cell division orchestrated by multiple oscillating proteins." ScienceDaily. www.sciencedaily.com/releases/2010/04/100427115203.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) — The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Sharks Off the Menu and on the Tourist Trail in Palau

Sharks Off the Menu and on the Tourist Trail in Palau

AFP (Sep. 2, 2014) — Tourists in Palau clamour to dive with sharks thanks to a pioneering conservation initiative -- as the island nation plans to completely ban commercial fishing in its vast ocean territory. 01:15 Video provided by AFP
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) — A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) — Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins