Featured Research

from universities, journals, and other organizations

Cell division orchestrated by multiple oscillating proteins

Date:
April 28, 2010
Source:
Rockefeller University
Summary:
Cell division is a crucial but dangerous business. It unfolds in a cycle of many steps, including DNA replication, spindle formation, mitosis and others, and they must happen in the right order to prevent abnormal cell death and cancer formation. New research examines the activity of two proteins at the heart of the cell-cycle control system and finds that the cycle has not just one, but several independent processes that help to maintain order. The work suggests that autonomous oscillating proteins may coordinate the events of the cell cycle through a phenomena called "phase-locking," similar to how our circadian rhythm syncs to the light-dark cycle of our environment.

Cellular synchrony. Scientists blocked yeast cells from dividing to observe the behavior of key proteins that control cell-cycle events. Above, Cdc14 (green) oscillates, separating from the nucleolus (red), and sometimes overlapping with it (yellow).
Credit: Image courtesy of Rockefeller University

Cell division is a crucial but dangerous business. It unfolds in a cycle of many steps, including DNA replication, spindle formation, mitosis and others, and they must happen in the right order to prevent abnormal cell death and cancer formation. New research from Rockefeller University examines the activity of two proteins at the heart of the cell-cycle control system and finds that the cycle has not just one, but several independent processes that help to maintain order. The work suggests that autonomous oscillating proteins may coordinate the events of the cell cycle through a phenomena called "phase-locking," similar to how our circadian rhythm syncs to the light-dark cycle of our environment.

"Our research suggests that the modern eukaryotic cell-cycle may start from multiple oscillatory modules," says Ying Lu, a former graduate fellow in Frederick R. Cross's Laboratory of Yeast Molecular Genetics, who led the research. "That modularity may provide a functional robustness to cell division."

At the center of the cell-cycle control system is a protein called cyclin-dependent-kinase (Cdk); Cdk's independent oscillating activity can establish the pace and order of cell cycle events. The researchers, led by Lu, reasoned that if Cdk oscillation was the only cycle-setting pacemaker in the cell, blocking it would cause the cell cycle to stall. In experiments published recently in Cell, they tested the hypothesis by watching what happens to another important protein in the cell cycle known as Cdc14, which normally moves away from the nucleolus, activates and begins antagonizing Cdk as the cell exits mitosis. Using quantitative time-lapse microscopy, the researchers were able to capture the transient Cdc14 movement and activation process. They then blocked Cdk oscillation and overt cell-cycle progression, and surprisingly found that the periodic Cdc14 activation/inactivation continued just as it would in a normally dividing cell. They also discovered a negative feedback pathway underlying this Cdc14 oscillator, a finding which indicates that the cell cycle may be composed of multiple autonomous pacemakers.

The existence of these pacemakers raises another question, says Lu, who is now a postdoc in Marc Kirschner's lab at Harvard University. How do oscillators with different intrinsic frequencies coordinate with each other to form a coherent cell cycle progression? The experiments suggest that, although Cdc14 activity oscillated at constant Cdk levels, its frequency was controlled by several different Cdk activities, which indicates that autonomous cell-cycle oscillators may coordinate each other through a phenomena called phase-locking. Such a system, which is analogous to day-night cycles entraining our circadian clocks, would help explain the evolution of the cell cycle, and to ensure its accuracy and reliability.

"We think multiple oscillators, as they exist independently in the cell cycle, could achieve coherence through interactions affecting their frequencies," Lu says.


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lu et al. Periodic Cyclin-Cdk Activity Entrains an Autonomous Cdc14 Release Oscillator. Cell, 2010; 141 (2): 268 DOI: 10.1016/j.cell.2010.03.021

Cite This Page:

Rockefeller University. "Cell division orchestrated by multiple oscillating proteins." ScienceDaily. ScienceDaily, 28 April 2010. <www.sciencedaily.com/releases/2010/04/100427115203.htm>.
Rockefeller University. (2010, April 28). Cell division orchestrated by multiple oscillating proteins. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2010/04/100427115203.htm
Rockefeller University. "Cell division orchestrated by multiple oscillating proteins." ScienceDaily. www.sciencedaily.com/releases/2010/04/100427115203.htm (accessed September 23, 2014).

Share This



More Plants & Animals News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Ice Age Wooly Mammoth Remains for Sale

Raw: Ice Age Wooly Mammoth Remains for Sale

AP (Sep. 23, 2014) A rare, well-preserved skeleton of a woolly mammoth is going on sale at Summers Place Auctions hope the 11.5-foot tall, almost intact specimen will fetch between $245,000 to $409,000. (Sept. 23) Video provided by AP
Powered by NewsLook.com
Fox Bites Conn. Student And School Staffers In Rare Attack

Fox Bites Conn. Student And School Staffers In Rare Attack

Newsy (Sep. 23, 2014) A fox attacked a second-grade boy at a Connecticut elementary school Monday. It also attacked two school staff members and a woman and her dog. Video provided by Newsy
Powered by NewsLook.com
Will Living Glue Be A Thing?

Will Living Glue Be A Thing?

Newsy (Sep. 23, 2014) Using proteins derived from mussels, engineers at MIT have made a supersticky underwater adhesive. They're now looking to make "living glue." Video provided by Newsy
Powered by NewsLook.com
Raw: Tiger Kills Man at India Zoo

Raw: Tiger Kills Man at India Zoo

AP (Sep. 23, 2014) A white tiger killed a young man who climbed over a fence at the New Delhi zoo and jumped into the animal's enclosure on Tuesday, a spokesman said. (Sept. 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins