Featured Research

from universities, journals, and other organizations

Carbon dioxide's effects on plants increase global warming, study finds

Date:
May 4, 2010
Source:
Carnegie Institution
Summary:
Trees and other plants help keep the planet cool, but rising levels of carbon dioxide in the atmosphere are turning down this global air conditioner. According to a new study, in some regions more than a quarter of the warming from increased carbon dioxide is due to its direct impact on vegetation, in addition to its better-known effect as a heat-trapping greenhouse gas.

Map of globe shows percentage of predicted warming due to the direct effect of carbon dioxide on plants. Carbon dioxide warms the Earth because it is a greenhouse gas in the atmosphere, but it also causes plants to provide less evaporative cooling. A study by Long Cao and Ken Caldeira of the Carnegie Institution for Science finds that in some places (darkest orange) over 25 percent of the warming from increased atmospheric carbon dioxide is a result of decreased evaporative cooling by plants.
Credit: Carnegie Institution

Trees and other plants help keep the planet cool, but rising levels of carbon dioxide in the atmosphere are turning down this global air conditioner. According to a new study by researchers at the Carnegie Institution for Science, in some regions more than a quarter of the warming from increased carbon dioxide is due to its direct impact on vegetation.

This warming is in addition to carbon dioxide's better-known effect as a heat-trapping greenhouse gas. For scientists trying to predict global climate change in the coming century, the study underscores the importance of including plants in their climate models.

"Plants have a very complex and diverse influence on the climate system," says study co-author Ken Caldeira of Carnegie's Department of Global Ecology. "Plants take carbon dioxide out of the atmosphere, but they also have other effects, such as changing the amount of evaporation from the land surface. It's impossible to make good climate predictions without taking all of these factors into account."

Plants give off water through tiny pores in their leaves, a process called evapotranspiration that cools the plant, just as perspiration cools our bodies. On a hot day, a tree can release tens of gallons of water into the air, acting as a natural air conditioner for its surroundings. The plants absorb carbon dioxide for photosynthesis through the same pores (called stomata). But when carbon dioxide levels are high, the leaf pores shrink. This causes less water to be released, diminishing the tree's cooling power.

The warming effects of carbon dioxide as a greenhouse gas have been known for a long time, says Caldeira. But he and fellow Carnegie scientist Long Cao were concerned that it is not as widely recognized that carbon dioxide also warms our planet by its direct effects on plants. Previous work by Carnegie's Chris Field and Joe Berry had indicated that the effects were important. "There is no longer any doubt that carbon dioxide decreases evaporative cooling by plants and that this decreased cooling adds to global warming," says Cao. "This effect would cause significant warming even if carbon dioxide were not a greenhouse gas."

In their model, the researchers doubled the concentration of atmospheric carbon dioxide and recorded the magnitude and geographic pattern of warming from different factors. They found that, averaged over the entire globe, the evapotranspiration effects of plants account for 16% of warming of the land surface, with greenhouse effects accounting for the rest. But in some regions, such as parts of North America and eastern Asia, it can be more than 25% of the total warming. "If we think of a doubling of carbon dioxide as causing about four degrees of warming, in many places three of those degrees are coming from the effect of carbon dioxide in the atmosphere, and one is coming from the direct effect of carbon dioxide on plants."

The researchers also found that their model predicted that high carbon dioxide will increase the runoff from the land surface in most areas, because more water from precipitation bypasses the plant cooling system and flows directly to rivers and streams. Earlier models based on greenhouse effects of carbon dioxide had also predicted higher runoff, but the new research predicts that changes in evapotranspiration due to high carbon dioxide could have an even stronger impact on water resources than those models predict.

"These results really show that how plants respond to carbon dioxide is very important for making good climate predictions," says Caldeira. "So if we want to improve climate predictions, we need to improve the representation of land plants in the climate models. More broadly, it shows that the kind of vegetation that's on the surface of our planet and what that vegetation is doing is very important in determining our climate. We need to take great care in considering what kind of changes we make to forests and other ecosystems, because they are likely to have important climate consequences."

The study is published in the May 3-7 online edition of the Proceedings of the National Academy of Sciences.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Cite This Page:

Carnegie Institution. "Carbon dioxide's effects on plants increase global warming, study finds." ScienceDaily. ScienceDaily, 4 May 2010. <www.sciencedaily.com/releases/2010/05/100503161435.htm>.
Carnegie Institution. (2010, May 4). Carbon dioxide's effects on plants increase global warming, study finds. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2010/05/100503161435.htm
Carnegie Institution. "Carbon dioxide's effects on plants increase global warming, study finds." ScienceDaily. www.sciencedaily.com/releases/2010/05/100503161435.htm (accessed April 24, 2014).

Share This



More Earth & Climate News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
New Pictures of Ship That Sank in 1888

New Pictures of Ship That Sank in 1888

AP (Apr. 24, 2014) Federal researchers have released new images of the City of Chester, a steamship that sank in San Francisco Bay in 1888. Researchers recently found the shipwreck while mapping shipping routes. (April 24) Video provided by AP
Powered by NewsLook.com
Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Reuters - US Online Video (Apr. 23, 2014) A group of space explorers say the chance of a city-obliterating asteroid striking Earth is higher than scientists previously believed. Deborah Gembara reports. Video provided by Reuters
Powered by NewsLook.com
UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins