Featured Research

from universities, journals, and other organizations

Researchers crack 'splicing code,' solve a mystery underlying biological complexity

Date:
May 6, 2010
Source:
University of Toronto
Summary:
Researchers have discovered a fundamentally new view of how living cells use a limited number of genes to generate enormously complex organs such as the brain.

Researchers at the University of Toronto have discovered a fundamentally new view of how living cells use a limited number of genes to generate enormously complex organs such as the brain.
Credit: Created by Graham Johnson of grahamj.com for HHMI Copyright 2005 and updated with Frey et al copyright 2010.

Researchers at the University of Toronto have discovered a fundamentally new view of how living cells use a limited number of genes to generate enormously complex organs such as the brain.

In a paper published on May 6 in the journal Nature entitled "Deciphering the Splicing Code," a research team led by Professors Brendan Frey and Benjamin Blencowe of the University of Toronto describes how a hidden code within DNA explains one of the central mysteries of genetic research -- namely how a limited number of human genes can produce a vastly greater number of genetic messages. The discovery bridges a decade-old gap between our understanding of the genome and the activity of complex processes within cells, and could one day help predict or prevent diseases such as cancers and neurodegenerative disorders.

When the human genome was fully sequenced in 2004, approximately 20,000 genes were found. However, it was discovered that living cells use those genes to generate a much richer and more dynamic source of instructions, consisting of hundreds of thousands of genetic messages that direct most cellular activities. Frey, who has appointments in Engineering and Medicine, likens this discovery to "hearing a full orchestra playing behind a locked door, and then when you pry the door open, you discover only three or four musicians generating all that music."

To figure out how living cells generate vast diversity in their genetic information, Frey and postdoctoral fellow Yoseph Barash developed a new computer-assisted biological analysis method that finds 'codewords' hidden within the genome that constitute what is referred to as a 'splicing code'. This code contains the biological rules that are used to govern how separate parts of a genetic message copied from a gene can be spliced together in different ways to produce different genetic messages (messenger RNAs). "For example, three neurexin genes can generate over 3,000 genetic messages that help control the wiring of the brain," says Frey.

"Previously, researchers couldn't predict how the genetic messages would be rearranged, or spliced, within a living cell," Frey said. "The splicing code that we discovered has been successfully used to predict how thousands of genetic messages are rearranged differently in many different tissues." Blencowe's group, including graduate student John Calarco, generated experimental data used to derive and test predictions from the code. "That the splicing code can make accurate predictions on such a large scale is a major step forward for the field," says Blencowe.

Frey and Blencowe attribute the success of their project to the close collaboration between their team of talented computational and experimental biologists. "Understanding a complex biological system is like understanding a complex electronic circuit. Our team 'reverse-engineered' the splicing code using large-scale experimental data generated by the group," Frey said.

Prof. Frey has appointments to the Canadian Institute for Advanced Research and the U of T's Department of Electrical and Computer Engineering, the Banting & Best Department of Medical Research (BBDMR) and the Department of Computer Science. Prof. Blencowe works in the University's Donnelly Centre for Cellular & Biomolecular Research and has appointments in the BBDMR and Department of Molecular Genetics

The research was supported by the Government of Canada through Genome Canada and the Ontario Genomics Institute, the Canadian Institutes of Health Research, National Cancer Institute of Canada, and Microsoft Research. Frey is an NSERC EWR Steacie Fellow and said that the fellowship was critical in freeing up resources so he could complete the project. The authors of the study are: Yoseph Barash, John A. Calarco, Weijun Gao, Qun Pan, Xinchen Wang Ofer Shai, Benjamin J. Blencowe & Brendan J. Frey.


Story Source:

The above story is based on materials provided by University of Toronto. The original article was written by Paul Cantin. Note: Materials may be edited for content and length.


Cite This Page:

University of Toronto. "Researchers crack 'splicing code,' solve a mystery underlying biological complexity." ScienceDaily. ScienceDaily, 6 May 2010. <www.sciencedaily.com/releases/2010/05/100505133252.htm>.
University of Toronto. (2010, May 6). Researchers crack 'splicing code,' solve a mystery underlying biological complexity. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2010/05/100505133252.htm
University of Toronto. "Researchers crack 'splicing code,' solve a mystery underlying biological complexity." ScienceDaily. www.sciencedaily.com/releases/2010/05/100505133252.htm (accessed August 21, 2014).

Share This




More Plants & Animals News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins