Featured Research

from universities, journals, and other organizations

How grazing lands influence greenhouse gas

Date:
May 24, 2010
Source:
American Society of Agronomy
Summary:
Scientists estimated net global warming potential for three grazing management systems located in central North Dakota. The results indicate that grazing lands are strong sinks of soil organic carbon and minor sinks of methane, but small to moderate sources of nitrous oxide.

Grazinglands represent one of the largest land resources in the world, yet their role as net sinks or sources of greenhouse gases is essentially unknown. Previous research has emphasized the role of grazing management on the sequestration of atmospheric carbon dioxide as soil organic carbon. However, there is a lack of information regarding how grazing management impacts the flux of two potent GHGs, nitrous oxide and methane.

Related Articles


A team of scientists lead by Mark Liebig at the USDA-ARS Northern Great Plains Research Laboratory estimated net global warming potential for three grazing management systems located in central North Dakota. The grazing management systems represented two native vegetation pastures under medium and high grazing pasture management, and a heavily grazed seeded crested wheatgrass pasture receiving supplemental nitrogen. The results indicate that grazinglands are strong sinks of soil organic carbon and minor sinks of methane, but small to moderate sources of nitrous oxide. Results from the study were published in the May-June 2010 issue of Journal of Environmental Quality, published by the America Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America.

Net global warming potential for the native grasslands was negative, implying an overall removal of greenhouse gases from the atmosphere. This finding underscores the value of grazed, mixed-grass prairie as a viable agroecosystem to serve as a net greenhouse gas sink in the northern Great Plains. Conversely, the seeded forage nitrous oxide emissions were nearly three times that of the native grasses, which contributed a net positive net global warming potential, implying net greenhouse gas emission to the atmosphere.

The research team was able to estimate global warming potential for each management practice by measuring changes in soil organic carbon, and nitrous oxide and methane flux. This data was combined with estimates for methane emissions from cattle and carbon dioxide emissions associated with applying nitrogen fertilizer.

"It's important to keep in mind the greenhouse gas balance we measured for the grazing treatments falls short of encompassing the full life-cycle of a steer," said Mark Liebig. "While our results suggest grazed native vegetation in the northern Great Plains is a net GHG sink, we need to acknowledge there is additional greenhouse gas emissions associated with cattle production outside of what we measured or estimated."

The study was conducted as part of a USDA-ARS cross-location research effort called GRACEnet (Greenhouse Gas Reduction through Agricultural Carbon Enhancement Network), which seeks to provide information on global warming potential of current agricultural practices, and to develop new management practices to reduce net greenhouse gas emissions from soil.


Story Source:

The above story is based on materials provided by American Society of Agronomy. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. A. Liebig, J. R. Gross, S. L. Kronberg, R. L. Phillips. Grazing Management Contributions to Net Global Warming Potential: A Long-term Evaluation in the Northern Great Plains. Journal of Environmental Quality, 2010; 39 (3): 799 DOI: 10.2134/jeq2009.0272

Cite This Page:

American Society of Agronomy. "How grazing lands influence greenhouse gas." ScienceDaily. ScienceDaily, 24 May 2010. <www.sciencedaily.com/releases/2010/05/100518121629.htm>.
American Society of Agronomy. (2010, May 24). How grazing lands influence greenhouse gas. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2010/05/100518121629.htm
American Society of Agronomy. "How grazing lands influence greenhouse gas." ScienceDaily. www.sciencedaily.com/releases/2010/05/100518121629.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins