Featured Research

from universities, journals, and other organizations

I am treefrog, feel me shake

Date:
May 21, 2010
Source:
Cell Press
Summary:
Using experiments involving a mechanical shaker and a robotic frog, researchers have found new evidence that male red-eyed treefrogs communicate with one another in aggressive contests by using vibrations they send through their plant perches. The findings open the door to further study of what has been a neglected channel for vertebrate communication.

Red eyed tree frog-agalychnis callidryas. Male red-eyed treefrogs communicate with one another in aggressive contests by using vibrations they send through their plant perches.
Credit: iStockphoto/Daniel Halfmann

Using experiments involving a mechanical shaker and a robotic frog, researchers reporting online on May 20th in Current Biology have found new evidence that male red-eyed treefrogs communicate with one another in aggressive contests by using vibrations they send through their plant perches. The findings open the door to further study of what has been a neglected channel for vertebrate communication.

Related Articles


"In the case of red-eyed treefrogs, tremulation displays in which the frogs shake their entire bodies convey information about the status and aggressive intent of the signaler," says Michael Caldwell of Boston University. "They also appear to carry information about the size of the signaler."

Earlier studies recognized the importance of vibrational signals for arthropod communication. Scientists had their suspicions that vertebrates on plants or in trees might rely on vibrational signals to communicate, too, but it had not been experimentally demonstrated until now.

In a series of playback experiments conducted at the Smithsonian Tropical Research Institute in Panama, the researchers found that plant-borne vibrations generated by the shaking display of male red-eyed treefrogs (Agalychnis callidryas) act as a signal and are both necessary and sufficient to elicit tremulations by other treefrogs in response. The frogs also tend to become more aggressive during visual playbacks, the researchers say, suggesting that both components of the signal may be important.

In male-male contests, tremulations were the most frequent aggressive display, and their use and vibrational characteristics varied with male size and depending on the context. The researchers say it now appears that most of the treefrogs' other signaling behaviors, including their acoustic calls, also generate strong and stereotyped vibrations that travel through plants and might carry information.

Caldwell explains that, although common, the frogs' behavior had likely been missed because of the tendency of human researchers to overlook vibrational signals, and because the treefrogs don't act normal under white light. "When we attached vibration-sensitive accelerometers to the plants and looked at the frogs under infrared light, we saw a whole new range of fascinating behaviors," he said.

The findings in treefrogs are likely applicable to other arboreal vertebrates, such as other frogs, lizards, birds, and primates, the researcher say. "Studies on frogs, birds, and primates have formed the core of our understanding of vertebrate communication," the researchers write, "yet we know almost nothing about vibrational signaling in these species. The further study of vibrational communication among arboreal vertebrates presents important unexplored opportunities to improve our comprehension of the behavioral ecology of these species, and of animal communication as a whole."

The researchers include Michael S. Caldwell, Boston University, Boston, MA; Gregory R. Johnston, Flinders University, Adelaide, Australia, Royal Zoological Society of South Australia, Adelaide Zoo, Adelaide, Australia, Smithsonian Tropical Research Institute, Panama, Republica de Panama; J. Gregory McDaniel, Boston University, Boston, MA; and Karen M. Warkentin, Boston University, Boston, MA, Smithsonian Tropical Research Institute, Panama, Republica de Panama.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michael S. Caldwell, Gregory R. Johnston, J. Gregory McDaniel, and Karen M. Warkentin. Vibrational Signaling in the Agonistic Interactions of Red-Eyed Treefrogs. Current Biology, May 20, 2010 DOI: 10.1016/j.cub.2010.03.069

Cite This Page:

Cell Press. "I am treefrog, feel me shake." ScienceDaily. ScienceDaily, 21 May 2010. <www.sciencedaily.com/releases/2010/05/100520131433.htm>.
Cell Press. (2010, May 21). I am treefrog, feel me shake. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2010/05/100520131433.htm
Cell Press. "I am treefrog, feel me shake." ScienceDaily. www.sciencedaily.com/releases/2010/05/100520131433.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins