Featured Research

from universities, journals, and other organizations

NASA completes critical design review of one Landsat instrument

Date:
May 26, 2010
Source:
NASA/Goddard Space Flight Center
Summary:
NASA engineers have begun building hardware for a new Landsat satellite instrument that helps monitor water consumption -- an important capability in the US West where precipitation is sparse and water rights are allocated -- now that they have passed an independent review of the instrument's design and integration and testing methods.

NASA engineers have begun building hardware for a new Landsat satellite instrument that helps monitor water consumption -- an important capability in the U.S. West where precipitation is sparse and water rights are allocated -- now that they have passed an independent review of the instrument's design and integration and testing methods.

Related Articles


"Having received the green light on our design during NASA's Critical Design Review, we are moving out on full implementation of our instrument," said Cathy Richardson, the instrument manager of the Thermal Infrared Sensor (TIRS), which will be built at the Goddard Space Flight Center in Greenbelt, Md.

TIRS is one of two instruments flying on the Landsat Data Continuity Mission (LDCM), the next generation in a series of satellites that have provided multispectral data of Earth's surface for more than 38 years. TIRS and the Operational Land Imager (OLI), being built by Ball Aerospace & Technologies Corp in Boulder, Colo., will extend Landsat's unparalleled record of Earth's changing landscapes.

NASA plans to launch LDCM in December 2012 as the follow-on to Landsat-7, launched in 1999. Landsat 7 and 5, launched in 1984, are continuing to supply images and operating beyond their design lives. As with preceding Landsat missions, the U.S. Geological Survey (USGS) will operate LDCM and maintain its data archive once it begins observations.

The 236-kg (525-lb.) TIRS is a two-channel thermal imager, providing 100-meter (328 feet) spatial resolution across a 185 km (115 mile) field-of-view. Both Landsats-5 and -7 provide thermal data, and the addition of TIRS will extend the Landsat database in the thermal infrared bands needed by a variety of users.

Thermal data are used operationally to monitor such things as water consumption on a field-by-field basis in the U.S. West mainly for agricultural purposes, said LDCM project scientist Jim Irons. TIRS will continue providing surface-temperature readings considered vital in a technique that resource managers in Idaho and other western states use to measure water use through evapotranspiration. As its name implies, evapotranspiration combines the evaporation of water into the atmosphere and the water vapor released by plants through respiration. "A transpiring plant is cooler than the surrounding area," Irons said. "If a forest is dry, it will not transpire and it will be warmer."

Western resource managers see the measurement technique as the most effective way to determine who is consuming water because it more accurately defines how much water is being removed from the system by a given individual or entity. Since adopting the technique, which its developers call METRIC for Mapping EvapoTranspiration with High Resolution and Internalized Calibration, resource managers report that the technique has helped resolve conflicts over water consumption among farmers irrigating their fields.

Landsat thermal data also are used to map urban heat fluxes for air-quality monitoring, assess volcano hazards, detect and screen clouds, track lake thermal plumes from power plants, map burn areas and assess wildfire risks, and identify mosquito-breeding areas.

TIRS will provide the infrared surface-temperature data with high-sensitivity, cryogenically cooled, Quantum Well Infrared Photodetector (QWIP) arrays, a detector technology that Goddard engineer Murzy Jhabvala developed over nearly two decades. With various funding sources, Jhabvala had matured the technology and had even created years earlier a one-million-pixel array that could sense a range of longer wavelength bands -- more robust than the TIRS requirement of 10.5 to 12.5 micrometers. TIRS is the first spaceflight instrument to use the technology.

"Instrument developers selected the QWIP technology because it could easily meet the instrument's performance requirements and production schedule," Jhabvala said, adding that he and his team began working on the detector system in July 2008.

In particular, TIRS will carry three 640 x 512 QWIP arrays that are made of Gallium Arsenide semiconductor chips layered with more than 100 layers of detector material. The layers act as quantum wells, which trap electrons -- the fundamental particles that carry an electric current -- so that only light with a specific energy can release them. If the light with the correct energy hits one of the quantum wells in the array, the freed electron flows through a separate readout chip above the array where it is recorded. A computer uses this information to create an image of the infrared source. Fabricators can build a detector to sense specific wavelength bands by varying the composition and thickness of the layers.

Jhabvala and his team qualified the technology for actual spaceflight last August, and plan to deliver the detector system this November for integration into the instrument.

For more information on the LCDM, visit: http://ldcm.nasa.gov/


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "NASA completes critical design review of one Landsat instrument." ScienceDaily. ScienceDaily, 26 May 2010. <www.sciencedaily.com/releases/2010/05/100526170241.htm>.
NASA/Goddard Space Flight Center. (2010, May 26). NASA completes critical design review of one Landsat instrument. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2010/05/100526170241.htm
NASA/Goddard Space Flight Center. "NASA completes critical design review of one Landsat instrument." ScienceDaily. www.sciencedaily.com/releases/2010/05/100526170241.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins