Featured Research

from universities, journals, and other organizations

Highly efficient solar cells could result from quantum dot research

Date:
June 18, 2010
Source:
University of Texas at Austin
Summary:
Conventional solar cell efficiency could be increased from the current limit of 30 percent to more than 60 percent, suggests new research on semiconductor nanocrystals, or quantum dots.

Xiaoyang Zhu and colleagues discovered that hot electrons can be transferred from photo-excited lead selenide nanocrystals to an electron conductor made of titanium dioxide. Their discovery points the way toward more efficient solar cells.
Credit: The University of Texas at Austin

Conventional solar cell efficiency could be increased from the current limit of 30 percent to more than 60 percent, suggests new research on semiconductor nanocrystals, or quantum dots, led by chemist Xiaoyang Zhu at The University of Texas at Austin.

Zhu and his colleagues report their results in this week's Science.

The scientists have discovered a method to capture the higher energy sunlight that is lost as heat in conventional solar cells.

The maximum efficiency of the silicon solar cell in use today is about 31 percent. That's because much of the energy from sunlight hitting a solar cell is too high to be turned into usable electricity. That energy, in the form of so-called "hot electrons," is lost as heat.

If the higher energy sunlight, or more specifically the hot electrons, could be captured, solar-to-electric power conversion efficiency could be increased theoretically to as high as 66 percent.

"There are a few steps needed to create what I call this 'ultimate solar cell,'" says Zhu, professor of chemistry and director of the Center for Materials Chemistry. "First, the cooling rate of hot electrons needs to be slowed down. Second, we need to be able to grab those hot electrons and use them quickly before they lose all of their energy."

Zhu says that semiconductor nanocrystals, or quantum dots, are promising for these purposes.

As for the first problem, a number of research groups have suggested that cooling of hot electrons can be slowed down in semiconductor nanocrystals. In a 2008 paper in Science, a research group from the University of Chicago showed this to be true unambiguously for colloidal semiconductor nanocrystals.

Zhu's team has now figured out the next critical step: how to take those electrons out.

They discovered that hot electrons can be transferred from photo-excited lead selenide nanocrystals to an electron conductor made of widely used titanium dioxide.

"If we take the hot electrons out, we can do work with them," says Zhu. "The demonstration of this hot electron transfer establishes that a highly efficient hot carrier solar cell is not just a theoretical concept, but an experimental possibility."

The researchers used quantum dots made of lead selenide, but Zhu says that their methods will work for quantum dots made of other materials, too.

He cautions that this is just one scientific step, and that more science and a lot of engineering need to be done before the world sees a 66 percent efficient solar cell.

In particular, there's a third piece of the science puzzle that Zhu is working on: connecting to an electrical conducting wire.

"If we take out electrons from the solar cell that are this fast, or hot, we also lose energy in the wire as heat," says Zhu. "Our next goal is to adjust the chemistry at the interface to the conducting wire so that we can minimize this additional energy loss. We want to capture most of the energy of sunlight. That's the ultimate solar cell.

"Fossil fuels come at a great environmental cost," says Zhu. "There is no reason that we cannot be using solar energy 100 percent within 50 years."

Funding for this research was provided by the U.S. Department of Energy. Coauthors include William Tisdale, Brooke Timp, David Norris and Eray Aydil from the University of Minnesota, and Kenrick Williams from The University of Texas at Austin.


Story Source:

The above story is based on materials provided by University of Texas at Austin. Note: Materials may be edited for content and length.


Journal Reference:

  1. William A. Tisdale, Kenrick J. Williams, Brooke A. Timp, David J. Norris, Eray S. Aydil, and X.-Y. Zhu. Hot-Electron Transfer from Semiconductor Nanocrystals. Science, 18 June 2010 328: 1543-1547 DOI: 10.1126/science.1185509

Cite This Page:

University of Texas at Austin. "Highly efficient solar cells could result from quantum dot research." ScienceDaily. ScienceDaily, 18 June 2010. <www.sciencedaily.com/releases/2010/06/100617143930.htm>.
University of Texas at Austin. (2010, June 18). Highly efficient solar cells could result from quantum dot research. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2010/06/100617143930.htm
University of Texas at Austin. "Highly efficient solar cells could result from quantum dot research." ScienceDaily. www.sciencedaily.com/releases/2010/06/100617143930.htm (accessed August 23, 2014).

Share This




More Earth & Climate News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Airlines on Iceland Volcano Alert

Airlines on Iceland Volcano Alert

Reuters - Business Video Online (Aug. 22, 2014) Iceland evacuates an area north of the country's Bardarbunga volcano, as the country's civil protection agency says it cannot rule out an eruption. Authorities have already warned airlines. As Joel Flynn reports, ash from the eruption of the Eyjafjallajokull volcano in 2010 shut down much of Europe's airspace for six days. Video provided by Reuters
Powered by NewsLook.com
Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Coal Gas Boom in China Holds Climate Risks

Coal Gas Boom in China Holds Climate Risks

AP (Aug. 22, 2014) China's energy revolution could do more harm than good for the environment, despite the country's commitment to reducing pollution and curbing its carbon emissions. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Microbrewery Chooses Special Can for Its Beer

Microbrewery Chooses Special Can for Its Beer

AP (Aug. 22, 2014) Aluminum giant, Novelis, has partnered with Red Hare Brewing Company to introduce the first certified high-content recycled beverage can. (Aug. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins