Featured Research

from universities, journals, and other organizations

Geo-neutrinos: Discovery of subatomic particles could answer deep questions in geology

Date:
July 12, 2010
Source:
Princeton University
Summary:
An international team has detected subatomic particles -- geo-neutrinos -- deep within Earth's interior. The discovery could help geologists understand how reactions taking place in the planet's interior affect events on the surface such as earthquakes and volcanoes. Someday, scientists may know enough about the sources and flow of heat in Earth to predict events like the recent volcanic eruption in Iceland.

The Princeton University scientists and others in the Borexino Collaboration have detected geoneutrinos at the Gran Sasso National Laboratory of the Italian Institute of Nuclear Physics. The discovery could explain how reactions taking place in the planet's deep interior affect events on the surface. This stainless steel sphere is part of the neutrino detector used in the project, located nearly a mile below the surface of the Gran Sasso mountain about 60 miles outside of Rome.
Credit: Photo by Paolo Lombardi INFN-MI

An international team including scientists from Princeton University has detected subatomic particles -- geo-neutrinos -- deep within Earth's interior. The discovery could help geologists understand how reactions taking place in the planet's interior affect events on the surface such as earthquakes and volcanoes. Someday, scientists may know enough about the sources and flow of heat in Earth to predict events like the recent volcanic eruption in Iceland.

Related Articles


The finding, made by the Borexino Collaboration at the Gran Sasso National Laboratory of the Italian Institute of Nuclear Physics, was reported in a paper published in the April issue of Physics Letters B. The work builds on earlier evidence of so-called "geo-neutrinos" obtained during a Japanese experiment in 2005.

"This is an important result," said Frank Calaprice, a professor of physics at Princeton and one of the study's authors. "It shows that geo-neutrinos have been detected and firmly establishes a new tool to study the interior of Earth."

Neutrinos, which are chargeless, inert, fundamental particles, are emitted by the sun and cosmic rays entering Earth's atmosphere. Geo-neutrinos are antineutrinos -- neutrinos' antimatter counterparts. Geo-neutrinos originate from the radioactive decay of uranium, thorium and potassium in Earth's crust and mantle -- the thick layer extending to 1,800 miles below the surface.

At laboratories like Gran Sasso, researchers are using instruments that act as geo-neutrino "telescopes," looking into Earth's interior by detecting these curious particles.

Scientists expect that geo-neutrinos will aid them in better identifying what constitutes matter deep within Earth. "It's a very significant discovery and holds much promise for better understanding the composition of Earth and how Earth operates," said Thomas Duffy, a professor of geosciences at Princeton, who was not involved in the research.

Earth scientists would like to know more about the crucial role that decaying elements such as uranium and thorium play in heating up Earth and causing convection in its mantle -- the slow, steady flow of hot rock in the interior carrying heat from great depths to Earth's surface. Convection, in turn, drives plate tectonics and all the accompanying dynamics of geology seen from the surface -- continents moving, seafloor spreading, volcanoes erupting and earthquakes occurring. No one knows whether radioactive decay dominates the heating action or is just a player among many factors.

The origin of the power produced within Earth is one of the fundamental questions of geology, according to Calaprice. The definite detection of geo-neutrinos by the Borexino experiment confirms that radioactivity contributes a significant fraction -- possibly most -- of the power, he said.

The Borexino experiment actually was designed to detect low-energy solar neutrinos, not geo-neutrinos. "As we were building the experiment, we realized we had the capability of detecting particles that were coming at us from the radioactivity deep inside Earth," said Cristiano Galbiati, an assistant professor of physics and another of the 13 Princeton collaborators among the 88 scientists involved in the research.

The Borexino project is located nearly a mile below the surface of the Gran Sasso mountain about 60 miles outside of Rome -- an ideal spot for studying neutrinos because the rock shields the detector from other types of radiation and particles that would overwhelm the sensing device. Much of the Borexino experiment is a process of eliminating the "noise" of background radiation.

Neutrinos are notoriously difficult to detect because they usually pass straight through matter, rarely interacting with it. The detector is composed of a nylon sphere containing 1,000 tons of a hydrocarbon liquid. An array of ultrasensitive photodetectors is aimed at the sphere that is encased within a stainless steel sphere. All of this is surrounded by 2,400 tons of highly purified water held within another steel sphere measuring 59 feet.

Solar neutrinos produce one type of signal when they come into contact with the detector, and geo-neutrinos produce another type. Because there are a thousand times fewer geo-neutrinos striking the detector, there are only a few events that occur per year. The paper describes two years of results, running up to December 2009. The experiment is continuing.

The importance of geo-neutrinos was pointed out by scientists in the 1960s, and a seminal study by Lawrence Krauss, Sheldon Glashow and David Schramm in 1994 laid the foundation for the field. In 2005, a Japan-U.S. collaboration called KamLAND operating an experiment at a mine in Japan reported an excess of low-energy "antineutrinos."

Scientists can envision a day when a series of geo-neutrino-detecting facilities, located at strategic spots around the globe, can sense particles to get a detailed understanding of Earth's interior and the source of its internal heat. This data could provide enough information to predict the occurrence of events such as volcano eruptions and earthquakes.


Story Source:

The above story is based on materials provided by Princeton University. The original article was written by Kitta MacPherson. Note: Materials may be edited for content and length.


Journal Reference:

  1. Borexino Collaboration, G. Bellini, J. Benziger, S. Bonetti, M. Buizza Avanzini, B. Caccianiga, L. Cadonati, F. Calaprice, C. Carraro, A. Chavarria, F. Dalnoki-Veress, D. D'Angelo, S. Davini, H. de Kerret, A. Derbin, A. Etenko, G. Fiorentini, K. Fomenko, D. Franco, C. Galbiati, et al. Observation of geo-neutrinos. Physics Letters B, 2010; 687 (4-5): 299 DOI: 10.1016/j.physletb.2010.03.051

Cite This Page:

Princeton University. "Geo-neutrinos: Discovery of subatomic particles could answer deep questions in geology." ScienceDaily. ScienceDaily, 12 July 2010. <www.sciencedaily.com/releases/2010/06/100621122134.htm>.
Princeton University. (2010, July 12). Geo-neutrinos: Discovery of subatomic particles could answer deep questions in geology. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2010/06/100621122134.htm
Princeton University. "Geo-neutrinos: Discovery of subatomic particles could answer deep questions in geology." ScienceDaily. www.sciencedaily.com/releases/2010/06/100621122134.htm (accessed October 24, 2014).

Share This



More Earth & Climate News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
E.U. Leaders Agree To 40% CO2 Emissions Cut By 2030

E.U. Leaders Agree To 40% CO2 Emissions Cut By 2030

Newsy (Oct. 23, 2014) The latest E.U. emissions deal calls for a 40 percent greenhouse gas cut, which leaders say sets Europe up to lead in climate negotiations next year. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins