Featured Research

from universities, journals, and other organizations

Sequencing of the human body louse genome: Important step toward control of disease-vector insect

Date:
June 22, 2010
Source:
Swiss Institute of Bioinoformatics
Summary:
The results of the sequencing and analysis of the human body louse genome offer new insights into the intriguing biology of this disease-vector insect.

The results of the sequencing and analysis of the human body louse genome, which were published on June 21 in the Proceedings of the National Academy of Sciences (PNAS), offer new insights into the intriguing biology of this disease-vector insect. The project involved more than 70 international scientists led by Professor Evgeny Zdobnov at the University of Geneva Medical School and the SIB Swiss Institute of Bioinformatics, with Professor Barry Pittendrigh at the University of Illinois and Professor Ewen Kirkness at the J. Craig Venter Institute.

The human body louse, Pediculus humanus humanus, is an obligate human parasite responsible for the transmission of bacteria that cause relapsing fever, trench fever, and epidemic typhus. The sequencing and comparative analysis of the body louse genome with other sequenced species revealed many features that will enhance our understanding of the relations between disease-vector insects, the pathogens they transmit, and the affected human hosts.

Zdobnov's team at the University of Geneva -- Dr Daniel Gerlach, Dr Evgenia Kriventseva, and Dr Robert Waterhouse -- focused on the identification of microRNA genes and the comparative analysis of the protein-coding gene repertoire using computational approaches. These studies revealed that despite having the smallest known insect genome (108Mb) and being an obligate parasite, the body louse has retained a remarkably complete "basal insect" repertoire of 10,773 protein-coding genes and 57 microRNAs. The compactness of the louse genome greatly helped to accurately predict the encoded gene repertoire, which includes relatively few genes associated with sensing or responding to the environment -- consistent with the body louse's relatively stable habitat offered by the human host. According to Zdobnov, "The key phylogenetic position of the body louse, together with the completeness and accuracy of its gene repertoire, mean that this genome will provide an invaluable evolutionary reference point for future studies of all other sequenced insect species, especially for the characterisation of key requirements for insect growth and development."

The human body louse usually lives in clothing and therefore infestations are associated with wearing unwashed clothes for prolonged periods such as during wartime, natural disasters or the often poor personal hygiene of homeless people or refugees. As well as irritations from infestations with body lice or the closely-related human head lice, the body louse may carry harmful bacteria such as Rickettsia prowazekii that cause epidemic typhus and are classified as a category B bioterrorism agent. As body and head lice are becoming increasingly resistant to traditional pesticides, the sequencing of the body louse genome will greatly help in the important search for new control methods facilitated by detailed molecular studies. With this in mind, the genome of the obligatory louse endosymbiont, Candidatus Riesia pediculicola, was also sequenced. Targeting the Reisia bacteria could offer novel louse control methods as Riesia are essential to the body louse because they encode the genes required for the production of vitamin B5, which is deficient in the louse diet of human blood.

"As the first sequenced genome of a permanent vertebrate ectoparasite," says Zdobnov, "these studies will help to understand the molecular mechanisms underlying the evolution of extreme specialization for life on a single host species." The compact yet complete body louse genome provides a robust outgroup for comparative studies with other insects, and the three-way interactions between the human host, the body louse parasite, and the Riesia endosymbiont offer numerous opportunities to gain greater insights into host-parasite-symbiont tripartite coevolution and speciation.


Story Source:

The above story is based on materials provided by Swiss Institute of Bioinoformatics. Note: Materials may be edited for content and length.


Cite This Page:

Swiss Institute of Bioinoformatics. "Sequencing of the human body louse genome: Important step toward control of disease-vector insect." ScienceDaily. ScienceDaily, 22 June 2010. <www.sciencedaily.com/releases/2010/06/100622102345.htm>.
Swiss Institute of Bioinoformatics. (2010, June 22). Sequencing of the human body louse genome: Important step toward control of disease-vector insect. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2010/06/100622102345.htm
Swiss Institute of Bioinoformatics. "Sequencing of the human body louse genome: Important step toward control of disease-vector insect." ScienceDaily. www.sciencedaily.com/releases/2010/06/100622102345.htm (accessed October 20, 2014).

Share This



More Health & Medicine News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Nigeria Beat Its Ebola Outbreak

How Nigeria Beat Its Ebola Outbreak

Newsy (Oct. 20, 2014) The World Health Organization has declared Nigeria free of Ebola. Health experts credit a bit of luck and the government's initial response. Video provided by Newsy
Powered by NewsLook.com
Another Study Suggests Viagra Is Good For The Heart

Another Study Suggests Viagra Is Good For The Heart

Newsy (Oct. 20, 2014) An ingredient in erectile-dysfunction medications such as Viagra could improve heart function. Perhaps not surprising, given Viagra's history. Video provided by Newsy
Powered by NewsLook.com
Ebola Worries End for Dozens on U.S. Watch Lists

Ebola Worries End for Dozens on U.S. Watch Lists

Reuters - US Online Video (Oct. 20, 2014) Forty-three people who had contact with Thomas Eric Duncan, the first person diagnosed with Ebola in the U.S., were cleared overnight of twice-daily monitoring after 21 days of showing no symptoms. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Fauci: Ebola Protocols to Focus on Training

Fauci: Ebola Protocols to Focus on Training

AP (Oct. 20, 2014) Dr. Anthony Fauci, head of the National Institute of Allergy and Infectious Diseases, says he expects revised CDC protocols on Ebola to focus on training, observation and ensuring health care workers are more protected. (Oct. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins