Featured Research

from universities, journals, and other organizations

Sweet way to detect prediabetes

Date:
July 9, 2010
Source:
Johns Hopkins Medical Institutions
Summary:
Having discovered a dramatic increase of an easy-to-detect enzyme in the red blood cells of people with diabetes and prediabetes, scientists say the discovery could lead to a simple, routine test for detecting the subtle onset of the disease, before symptoms or complications occur and in time to reverse its course.

Having discovered a dramatic increase of an easy-to-detect enzyme in the red blood cells of people with diabetes and prediabetes, Johns Hopkins scientists say the discovery could lead to a simple, routine test for detecting the subtle onset of the disease, before symptoms or complications occur and in time to reverse its course.

Related Articles


Pilot studies, published online April 22 in Diabetes, show the enzyme O-GlcNAcase is up to two to three times higher in people with diabetes and prediabetes than in those with no disease: "That's a big difference, especially in an enzyme that's as tightly regulated as this one is," says Gerald Hart, Ph.D., the DeLamar Professor and director of biological chemistry at the Johns Hopkins School of Medicine.

Building on their previous research, which showed how an abundant but difficult-to-detect sugar switch known as O-GlcNAc (pronounced oh-GLICK-nack) responded to nutrients and stress, the Hopkins team knew this small molecule was elevated in the red cells of patients with diabetes. "The question was whether the elevation happened in the earliest stages of diabetes and therefore might have value as a diagnostic tool," Hart said.

To find out, Kyoungsook Park, a graduate student of biological chemistry working in Hart's lab, focused on levels of O-GlcNAcase, an enzyme that removes O-GlcNAc in red cells. O-GlcNAc modifies many of the cell's proteins to control their functions in response to nutrients and stress. Nutrients, such as glucose and lipids, increase the extent of O-GlcNAc modification of proteins affecting their activities. When the extent of O-GlcNAc attached to proteins becomes too high, as occurs in diabetes, it is harmful to the cell.

First, Park purified human red blood cells by depleting them of their main constituent, hemoglobin. The samples had been collected by two sources -- the National Institute of Diabetes, Digestive and Kidney Diseases, or NIDDK, and Johns Hopkins Diabetes Center in collaboration with Christopher D. Saudek, M.D. -- and characterized as normal (36 samples), prediabetes (13 samples) and type 2 diabetes (53 samples) according to traditional tests that require patient fasting. Defined as normal hemoglobin A1c with impaired fasting glucose, prediabetes is an intermediate state of altered glucose metabolism with a heightened risk of developing type 2 diabetes and other associated complications.

Then, she measured and compared the amount of the enzyme protein within the red cells associated with the sugar molecule, O-GlcNAc.

"When I checked the enzyme levels and saw how dramatically different they were between the prediabetic cells and the controls, I thought I did something wrong," Park says. "I repeated the test five times until I could believe it myself."

Hart speculates that in diabetes and prediabetes, it's not a good thing for the increased amount of sugar to be attached to proteins, so the cell is responding by elevating the enzyme that gets rid of it.

"This is an example of how basic research is directly affecting a serious disease," Hart says, adding that his team's pilot studies encourage further investigation of a method that potentially could fill the void that currently exists for an easy, accurate routine test for prediabetes. "Only a much larger clinical trial will determine if, by measuring O-GlcNAcase, we can accurately diagnose prediabetes."

In addition to Park and Hart, Chistopher D. Saudek, also of Johns Hopkins University School of Medicine, is an author of the paper.

Funding was provided by the NIH NIDDK.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Sweet way to detect prediabetes." ScienceDaily. ScienceDaily, 9 July 2010. <www.sciencedaily.com/releases/2010/07/100708171349.htm>.
Johns Hopkins Medical Institutions. (2010, July 9). Sweet way to detect prediabetes. ScienceDaily. Retrieved April 1, 2015 from www.sciencedaily.com/releases/2010/07/100708171349.htm
Johns Hopkins Medical Institutions. "Sweet way to detect prediabetes." ScienceDaily. www.sciencedaily.com/releases/2010/07/100708171349.htm (accessed April 1, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, April 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Wound-Healing Laser Soon to Be a Reality Israeli Scientist

Wound-Healing Laser Soon to Be a Reality Israeli Scientist

Reuters - Innovations Video Online (Apr. 1, 2015) Israeli scientists says laser bonding of tissue allows much faster healing and less scarring. Amy Pollock has more. Video provided by Reuters
Powered by NewsLook.com
Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

AFP (Apr. 1, 2015) The governments of Liberia and Sierra Leone have been busy fighting the menace created by the deadly Ebola virus, but illicit drug lords have taken advantage of the situation to advance the drug trade. Duration: 01:12 Video provided by AFP
Powered by NewsLook.com
Stigma Stalks India's Leprosy Sufferers as Disease Returns

Stigma Stalks India's Leprosy Sufferers as Disease Returns

AFP (Apr. 1, 2015) The Indian government declared victory over leprosy in 2005, but the disease is making a comeback in some parts of the country, with more than a hundred thousand lepers still living in colonies, shunned from society. Duration: 02:41 Video provided by AFP
Powered by NewsLook.com
7-Year-Old Girl Gets 3-D Printed 'robohand'

7-Year-Old Girl Gets 3-D Printed 'robohand'

AP (Mar. 31, 2015) Although she never had much interest in prosthetic limbs before, Faith Lennox couldn&apos;t wait to slip on her new robohand. The 7-year-old, who lost part of her left arm when she was a baby, grabbed it as soon as it came off a 3-D printer. (March 31) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins